scheduling_edm_euler.py 20.6 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Katherine Crowson and The HuggingFace Team. All rights reserved.
Suraj Patil's avatar
Suraj Patil committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
Suraj Patil's avatar
Suraj Patil committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
Suraj Patil's avatar
Suraj Patil committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EDMEulerSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
37
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Suraj Patil's avatar
Suraj Patil committed
38
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
40
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Suraj Patil's avatar
Suraj Patil committed
41
42
43
44
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

45
46
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
Suraj Patil's avatar
Suraj Patil committed
47
48
49
50
51
52
53


class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
    """
    Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].

    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
Quentin Gallouédec's avatar
Quentin Gallouédec committed
54
    https://huggingface.co/papers/2206.00364
Suraj Patil's avatar
Suraj Patil committed
55
56
57
58
59
60
61
62
63
64
65
66
67

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        sigma_min (`float`, *optional*, defaults to 0.002):
            Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
            range is [0, 10].
        sigma_max (`float`, *optional*, defaults to 80.0):
            Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
            range is [0.2, 80.0].
        sigma_data (`float`, *optional*, defaults to 0.5):
            The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
68
69
        sigma_schedule (`str`, *optional*, defaults to `karras`):
            Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
Quentin Gallouédec's avatar
Quentin Gallouédec committed
70
71
            (https://huggingface.co/papers/2206.00364). Other acceptable value is "exponential". The exponential
            schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl.
Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
77
            Video](https://huggingface.co/papers/2210.02303) paper).
Suraj Patil's avatar
Suraj Patil committed
78
79
        rho (`float`, *optional*, defaults to 7.0):
            The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
80
81
82
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
Suraj Patil's avatar
Suraj Patil committed
83
84
85
86
87
88
89
90
91
92
93
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
94
        sigma_schedule: str = "karras",
Suraj Patil's avatar
Suraj Patil committed
95
96
97
        num_train_timesteps: int = 1000,
        prediction_type: str = "epsilon",
        rho: float = 7.0,
98
        final_sigmas_type: str = "zero",  # can be "zero" or "sigma_min"
Suraj Patil's avatar
Suraj Patil committed
99
    ):
100
101
102
        if sigma_schedule not in ["karras", "exponential"]:
            raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`")

Suraj Patil's avatar
Suraj Patil committed
103
104
105
        # setable values
        self.num_inference_steps = None

Aryan's avatar
Aryan committed
106
107
        sigmas_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
        sigmas = torch.arange(num_train_timesteps + 1, dtype=sigmas_dtype) / num_train_timesteps
108
        if sigma_schedule == "karras":
109
            sigmas = self._compute_karras_sigmas(sigmas)
110
        elif sigma_schedule == "exponential":
111
            sigmas = self._compute_exponential_sigmas(sigmas)
Aryan's avatar
Aryan committed
112
        sigmas = sigmas.to(torch.float32)
113

Suraj Patil's avatar
Suraj Patil committed
114
115
        self.timesteps = self.precondition_noise(sigmas)

116
117
118
119
120
121
122
123
124
125
        if self.config.final_sigmas_type == "sigma_min":
            sigma_last = sigmas[-1]
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        self.sigmas = torch.cat([sigmas, torch.full((1,), fill_value=sigma_last, device=sigmas.device)])
Suraj Patil's avatar
Suraj Patil committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

        self.is_scale_input_called = False

        self._step_index = None
        self._begin_index = None
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        return (self.config.sigma_max**2 + 1) ** 0.5

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
141
        The index counter for current timestep. It will increase 1 after each scheduler step.
Suraj Patil's avatar
Suraj Patil committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
158
            begin_index (`int`, defaults to `0`):
Suraj Patil's avatar
Suraj Patil committed
159
160
161
162
163
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def precondition_inputs(self, sample, sigma):
Aryan's avatar
Aryan committed
164
        c_in = self._get_conditioning_c_in(sigma)
Suraj Patil's avatar
Suraj Patil committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        scaled_sample = sample * c_in
        return scaled_sample

    def precondition_noise(self, sigma):
        if not isinstance(sigma, torch.Tensor):
            sigma = torch.tensor([sigma])

        c_noise = 0.25 * torch.log(sigma)

        return c_noise

    def precondition_outputs(self, sample, model_output, sigma):
        sigma_data = self.config.sigma_data
        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)

        if self.config.prediction_type == "epsilon":
            c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        elif self.config.prediction_type == "v_prediction":
            c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        else:
            raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")

        denoised = c_skip * sample + c_out * model_output

        return denoised

191
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
192
193
194
195
196
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.

        Args:
197
            sample (`torch.Tensor`):
Suraj Patil's avatar
Suraj Patil committed
198
199
200
201
202
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
203
            `torch.Tensor`:
Suraj Patil's avatar
Suraj Patil committed
204
205
206
207
208
209
210
211
212
213
214
                A scaled input sample.
        """
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
        sample = self.precondition_inputs(sample, sigma)

        self.is_scale_input_called = True
        return sample

215
216
217
218
219
220
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        sigmas: Optional[Union[torch.Tensor, List[float]]] = None,
    ):
Suraj Patil's avatar
Suraj Patil committed
221
222
223
224
225
226
227
228
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
229
230
231
            sigmas (`Union[torch.Tensor, List[float]]`, *optional*):
                Custom sigmas to use for the denoising process. If not defined, the default behavior when
                `num_inference_steps` is passed will be used.
Suraj Patil's avatar
Suraj Patil committed
232
233
234
        """
        self.num_inference_steps = num_inference_steps

Aryan's avatar
Aryan committed
235
        sigmas_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
236
        if sigmas is None:
Aryan's avatar
Aryan committed
237
            sigmas = torch.linspace(0, 1, self.num_inference_steps, dtype=sigmas_dtype)
238
        elif isinstance(sigmas, float):
Aryan's avatar
Aryan committed
239
            sigmas = torch.tensor(sigmas, dtype=sigmas_dtype)
240
        else:
Aryan's avatar
Aryan committed
241
            sigmas = sigmas.to(sigmas_dtype)
242
        if self.config.sigma_schedule == "karras":
243
            sigmas = self._compute_karras_sigmas(sigmas)
244
        elif self.config.sigma_schedule == "exponential":
245
            sigmas = self._compute_exponential_sigmas(sigmas)
246
        sigmas = sigmas.to(dtype=torch.float32, device=device)
Aryan's avatar
Aryan committed
247

Suraj Patil's avatar
Suraj Patil committed
248
249
        self.timesteps = self.precondition_noise(sigmas)

250
251
252
253
254
255
256
257
258
259
        if self.config.final_sigmas_type == "sigma_min":
            sigma_last = sigmas[-1]
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        self.sigmas = torch.cat([sigmas, torch.full((1,), fill_value=sigma_last, device=sigmas.device)])
Suraj Patil's avatar
Suraj Patil committed
260
261
262
263
264
        self._step_index = None
        self._begin_index = None
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    # Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
265
    def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
266
267
268
269
270
271
272
273
        """Constructs the noise schedule of Karras et al. (2022)."""
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
274
275
        return sigmas

276
    def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
277
278
279
280
281
282
283
        """Implementation closely follows k-diffusion.

        https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
        """
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
Suraj Patil's avatar
Suraj Patil committed
284
285
286
        return sigmas

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def index_for_timestep(
        self, timestep: Union[float, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index of a given timestep in the timestep schedule.

        Args:
            timestep (`float` or `torch.Tensor`):
                The timestep value to find in the schedule.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule. For the very first step, returns the second index if
                multiple matches exist to avoid skipping a sigma when starting mid-schedule (e.g., for image-to-image).
        """
Suraj Patil's avatar
Suraj Patil committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
318
319
320
321
322
323
324
325
    def _init_step_index(self, timestep: Union[float, torch.Tensor]) -> None:
        """
        Initialize the step index for the scheduler based on the given timestep.

        Args:
            timestep (`float` or `torch.Tensor`):
                The current timestep to initialize the step index from.
        """
Suraj Patil's avatar
Suraj Patil committed
326
327
328
329
330
331
332
333
334
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
335
336
337
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
Suraj Patil's avatar
Suraj Patil committed
338
339
340
341
342
343
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
Aryan's avatar
Aryan committed
344
        pred_original_sample: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
345
346
347
348
349
350
    ) -> Union[EDMEulerSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
351
            model_output (`torch.Tensor`):
Suraj Patil's avatar
Suraj Patil committed
352
353
354
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
355
            sample (`torch.Tensor`):
Suraj Patil's avatar
Suraj Patil committed
356
357
358
359
360
361
362
363
364
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
365
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple.
Suraj Patil's avatar
Suraj Patil committed
366
367
368
369
370
371
372

        Returns:
            [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

373
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
Suraj Patil's avatar
Suraj Patil committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EDMEulerScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            logger.warning(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

        sigma = self.sigmas[self.step_index]

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
401
402
403
404
            noise = randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
            )
            eps = noise * s_noise
Suraj Patil's avatar
Suraj Patil committed
405
406
407
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
Aryan's avatar
Aryan committed
408
409
        if pred_original_sample is None:
            pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat)
Suraj Patil's avatar
Suraj Patil committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

        dt = self.sigmas[self.step_index + 1] - sigma_hat

        prev_sample = sample + derivative * dt

        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
425
426
427
428
            return (
                prev_sample,
                pred_original_sample,
            )
Suraj Patil's avatar
Suraj Patil committed
429
430
431
432
433
434

        return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
435
436
437
438
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise tensor to add to the original samples.
            timesteps (`torch.Tensor`):
                The timesteps at which to add noise, determining the noise level from the schedule.

        Returns:
            `torch.Tensor`:
                The noisy samples with added noise scaled according to the timestep schedule.
        """
Suraj Patil's avatar
Suraj Patil committed
454
455
456
457
458
459
460
461
462
463
464
465
466
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
467
468
469
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
Suraj Patil's avatar
Suraj Patil committed
470
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
471
            # add noise is called before first denoising step to create initial latent(img2img)
Suraj Patil's avatar
Suraj Patil committed
472
473
474
475
476
477
478
479
480
            step_indices = [self.begin_index] * timesteps.shape[0]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

Aryan's avatar
Aryan committed
481
482
483
484
    def _get_conditioning_c_in(self, sigma):
        c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
        return c_in

Suraj Patil's avatar
Suraj Patil committed
485
486
    def __len__(self):
        return self.config.num_train_timesteps