scheduling_dpmsolver_sde.py 23.7 KB
Newer Older
1
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torchsde

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


class BatchedBrownianTree:
    """A wrapper around torchsde.BrownianTree that enables batches of entropy."""

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get("w0", torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2**63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
        self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]

    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each
            with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """

    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)

    def __call__(self, sigma, sigma_next):
        t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
79
80
81
82
83
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
84
85
86
87
88
89
90
91
92
93
94
95
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
96
97
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
98
99
100
101

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
102
    if alpha_transform_type == "cosine":
103

YiYi Xu's avatar
YiYi Xu committed
104
105
106
107
108
109
110
111
112
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
113
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
114
115
116
117
118

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
119
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
120
121
122
123
124
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
    """
125
126
    DPMSolverSDEScheduler implements the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based
    Generative Models](https://huggingface.co/papers/2206.00364) paper.
127

128
129
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
130
131

    Args:
132
133
134
135
136
137
138
139
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.00085):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.012):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
140
            `linear` or `scaled_linear`.
141
142
143
144
145
146
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
147
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
148
149
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
150
        noise_sampler_seed (`int`, *optional*, defaults to `None`):
151
152
153
154
155
            The random seed to use for the noise sampler. If `None`, a random seed is generated.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
156
            An offset added to the inference steps, as required by some model families.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
        use_karras_sigmas: Optional[bool] = False,
        noise_sampler_seed: Optional[int] = None,
173
174
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
175
176
177
178
179
180
181
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
182
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
        self.use_karras_sigmas = use_karras_sigmas
        self.noise_sampler = None
        self.noise_sampler_seed = noise_sampler_seed
197
        self._step_index = None
198
        self._begin_index = None
199
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
200

201
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
202
203
204
205
206
207
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
208
209
210
211
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
212
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
213

214
215
        return indices[pos].item()

216
217
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
218
219
220
221
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
222
        else:
223
            self._step_index = self._begin_index
224

225
226
227
228
229
230
231
232
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

233
234
235
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
236
        The index counter for current timestep. It will increase 1 after each scheduler step.
237
238
239
        """
        return self._step_index

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

258
259
    def scale_model_input(
        self,
260
261
262
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
263
264
265
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
266
267

        Args:
268
            sample (`torch.Tensor`):
269
270
271
272
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

273
        Returns:
274
            `torch.Tensor`:
275
                A scaled input sample.
276
        """
277
278
        if self.step_index is None:
            self._init_step_index(timestep)
279

280
        sigma = self.sigmas[self.step_index]
281
282
283
284
285
286
287
288
289
290
291
        sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma
        sample = sample / ((sigma_input**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
292
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
293
294
295

        Args:
            num_inference_steps (`int`):
296
297
298
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
299
300
301
302
303
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
323
324
325
326
327

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        log_sigmas = np.log(sigmas)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)

328
        if self.config.use_karras_sigmas:
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

        second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas)

        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
        second_order_timesteps = torch.from_numpy(second_order_timesteps)
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        timesteps[1::2] = second_order_timesteps

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = timesteps.to(device, dtype=torch.float32)
        else:
            self.timesteps = timesteps.to(device=device)

        # empty first order variables
        self.sample = None
        self.mid_point_sigma = None

353
        self._step_index = None
354
        self._begin_index = None
355
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
356
357
        self.noise_sampler = None

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def _second_order_timesteps(self, sigmas, log_sigmas):
        def sigma_fn(_t):
            return np.exp(-_t)

        def t_fn(_sigma):
            return -np.log(_sigma)

        midpoint_ratio = 0.5
        t = t_fn(sigmas)
        delta_time = np.diff(t)
        t_proposed = t[:-1] + delta_time * midpoint_ratio
        sig_proposed = sigma_fn(t_proposed)
        timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed])
        return timesteps

    # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
376
        log_sigma = np.log(np.maximum(sigma, 1e-10))
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
398
    def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    @property
    def state_in_first_order(self):
        return self.sample is None

    def step(
        self,
417
418
419
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
420
421
422
423
        return_dict: bool = True,
        s_noise: float = 1.0,
    ) -> Union[SchedulerOutput, Tuple]:
        """
424
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
425
        process from the learned model outputs (most often the predicted noise).
426
427

        Args:
428
            model_output (`torch.Tensor` or `np.ndarray`):
429
                The direct output from learned diffusion model.
430
            timestep (`float` or `torch.Tensor`):
431
                The current discrete timestep in the diffusion chain.
432
            sample (`torch.Tensor` or `np.ndarray`):
433
434
435
436
437
438
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
            s_noise (`float`, *optional*, defaults to 1.0):
                Scaling factor for noise added to the sample.

439
440
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
441
442
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
443
        """
444
445
        if self.step_index is None:
            self._init_step_index(timestep)
446
447
448
449
450
451
452

        # Create a noise sampler if it hasn't been created yet
        if self.noise_sampler is None:
            min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max()
            self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed)

        # Define functions to compute sigma and t from each other
453
        def sigma_fn(_t: torch.Tensor) -> torch.Tensor:
454
455
            return _t.neg().exp()

456
        def t_fn(_sigma: torch.Tensor) -> torch.Tensor:
457
458
459
            return _sigma.log().neg()

        if self.state_in_first_order:
460
461
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
462
463
        else:
            # 2nd order
464
465
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        # Set the midpoint and step size for the current step
        midpoint_ratio = 0.5
        t, t_next = t_fn(sigma), t_fn(sigma_next)
        delta_time = t_next - t
        t_proposed = t + delta_time * midpoint_ratio

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = sample - sigma_input * model_output
        elif self.config.prediction_type == "v_prediction":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

        if sigma_next == 0:
            derivative = (sample - pred_original_sample) / sigma
            dt = sigma_next - sigma
            prev_sample = sample + derivative * dt
        else:
            if self.state_in_first_order:
                t_next = t_proposed
            else:
                sample = self.sample

            sigma_from = sigma_fn(t)
            sigma_to = sigma_fn(t_next)
            sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
            sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
            ancestral_t = t_fn(sigma_down)
            prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - (
                t - ancestral_t
            ).expm1() * pred_original_sample
            prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up

            if self.state_in_first_order:
                # store for 2nd order step
                self.sample = sample
                self.mid_point_sigma = sigma_fn(t_next)
            else:
                # free for "first order mode"
                self.sample = None
                self.mid_point_sigma = None

518
519
520
        # upon completion increase step index by one
        self._step_index += 1

521
522
523
524
525
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

526
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
527
528
    def add_noise(
        self,
529
530
531
532
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
533
534
535
536
537
538
539
540
541
542
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

543
544
545
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
546
547
548
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
549
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
550
            # add noise is called before first denoising step to create initial latent(img2img)
551
            step_indices = [self.begin_index] * timesteps.shape[0]
552
553
554
555
556
557
558
559
560
561

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps