dummy_pt_objects.py 33.8 KB
Newer Older
1
2
3
4
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class AsymmetricAutoencoderKL(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


20
class AutoencoderKL(metaclass=DummyObject):
21
    _backends = ["torch"]
22
23
24
25
26
27
28
29
30
31
32
33
34

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class AutoencoderKLTemporalDecoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
class AutoencoderTiny(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class ConsistencyDecoderVAE(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


80
class ControlNetModel(metaclass=DummyObject):
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
class ControlNetXSAdapter(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class DiTTransformer2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
class HunyuanDiT2DControlNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class HunyuanDiT2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
class HunyuanDiT2DMultiControlNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
class I2VGenXLUNet(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


185
class Kandinsky3UNet(metaclass=DummyObject):
186
    _backends = ["torch"]
187
188
189
190

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

191
192
193
194
195
196
197
198
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class LatteTransformer3DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
class LuminaNextDiT2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


230
class ModelMixin(metaclass=DummyObject):
231
232
233
234
235
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

236
237
238
239
240
241
242
243
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

244

Dhruv Nair's avatar
Dhruv Nair committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
class MotionAdapter(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
260
261
262
263
264
265
266
267
268
class MultiAdapter(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class PixArtTransformer2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Will Berman's avatar
Will Berman committed
284
285
286
287
288
289

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
class PriorTransformer(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
class SD3ControlNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class SD3MultiControlNetModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Dhruv Nair's avatar
Dhruv Nair committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
class SD3Transformer2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
class T2IAdapter(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
class T5FilmDecoder(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
class Transformer2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
class UNet1DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


410
411
412
413
414
415
class UNet2DConditionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

416
417
418
419
420
421
422
423
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

424
425
426
427
428
429
430

class UNet2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

431
432
433
434
435
436
437
438
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
class UNet3DConditionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
class UNetControlNetXSModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Dhruv Nair's avatar
Dhruv Nair committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
class UNetMotionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
class UNetSpatioTemporalConditionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
class UVit2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


515
516
517
518
519
520
class VQModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

521
522
523
524
525
526
527
528
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

def get_constant_schedule(*args, **kwargs):
    requires_backends(get_constant_schedule, ["torch"])


def get_constant_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_constant_schedule_with_warmup, ["torch"])


def get_cosine_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])


def get_linear_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_linear_schedule_with_warmup, ["torch"])


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])


def get_scheduler(*args, **kwargs):
    requires_backends(get_scheduler, ["torch"])


558
class AudioPipelineOutput(metaclass=DummyObject):
559
560
561
562
563
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

564
565
    @classmethod
    def from_config(cls, *args, **kwargs):
YiYi Xu's avatar
YiYi Xu committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class AutoPipelineForImage2Image(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class AutoPipelineForInpainting(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class AutoPipelineForText2Image(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
611
612
613
614
615
616
617
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Ayush Mangal's avatar
Ayush Mangal committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
class BlipDiffusionControlNetPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class BlipDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


648
649
650
651
652
653
654
655
class CLIPImageProjection(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
656
657
658
659
660
661
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

662

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
class ConsistencyModelPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
class DanceDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


693
694
695
696
697
698
class DDIMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

699
700
701
702
703
704
705
706
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

707
708
709
710
711

class DDPMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class DiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Kashif Rasul's avatar
Kashif Rasul committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
class DiTPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


753
754
755
756
class ImagePipelineOutput(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
757
758
        requires_backends(self, ["torch"])

759
760
761
762
763
764
765
766
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

767
768
769
770
771
772
773

class KarrasVePipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

774
775
776
777
778
779
780
781
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

782
783
784
785
786
787
788

class LDMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

789
    @classmethod
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LDMSuperResolutionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
805
806
807
808
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
809
810
811
812
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


813
814
815
816
817
818
class PNDMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

819
820
821
822
823
824
825
826
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

827

Revist's avatar
Revist committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
class RePaintPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


843
844
845
846
847
class ScoreSdeVePipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
848
849
850
851

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
Will Berman's avatar
Will Berman committed
852
853
854
855
856
857

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
class StableDiffusionMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
873
874
875
876
877
878
879
880
881
class AmusedScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
882
883
884
885
886
887
888
889
890
891
892

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class CMStochasticIterativeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
893

894
895
896
897
898
899
900
901
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

902

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
class DDIMInverseScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
class DDIMParallelScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


933
934
935
936
937
938
class DDIMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

939
940
941
942
943
944
945
946
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
class DDPMParallelScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


963
964
965
966
967
968
class DDPMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

969
    @classmethod
970
    def from_config(cls, *args, **kwargs):
971
972
973
974
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
Kashif Rasul's avatar
Kashif Rasul committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
        requires_backends(cls, ["torch"])


class DDPMWuerstchenScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
990
991
992
993
994
995
996
997
998
999
1000
        requires_backends(cls, ["torch"])


class DEISMultistepScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
1001
1002
1003
1004
1005
1006
1007
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
class DPMSolverMultistepInverseScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1023
1024
1025
1026
class DPMSolverMultistepScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class DPMSolverSinglestepScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
class EDMDPMSolverMultistepScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Suraj Patil's avatar
Suraj Patil committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
class EDMEulerScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


hlky's avatar
hlky committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class EulerDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
Dhruv Nair's avatar
Dhruv Nair committed
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FlowMatchEulerDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class FlowMatchHeunDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
hlky's avatar
hlky committed
1135
1136
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class HeunDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
hlky's avatar
hlky committed
1152
1153
1154
1155
1156
1157

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1158
1159
1160
1161
1162
1163
1164
class IPNDMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
1165
1166
1167
1168
1169
1170
1171
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

1172
1173
1174
1175
1176
1177
1178

class KarrasVeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

1179
1180
1181
1182
1183
1184
1185
1186
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

1187

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
class KDPM2AncestralDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class KDPM2DiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class LCMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])
1227
1228
1229
1230
1231
1232

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1233
1234
1235
1236
1237
1238
class PNDMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

1239
1240
1241
1242
1243
1244
1245
1246
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

1247

Revist's avatar
Revist committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
class RePaintScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Junsong Chen's avatar
Junsong Chen committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
class SASolverScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1278
1279
1280
1281
1282
1283
class SchedulerMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

1284
1285
1286
1287
1288
1289
1290
1291
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

1292
1293
1294
1295
1296

class ScoreSdeVeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
Will Berman's avatar
Will Berman committed
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Michael's avatar
Michael committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
class TCDScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


Will Berman's avatar
Will Berman committed
1323
1324
1325
1326
class UnCLIPScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class UniPCMultistepScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
1342
1343
        requires_backends(self, ["torch"])

1344
1345
1346
1347
1348
1349
1350
1351
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

1352

Will Berman's avatar
Will Berman committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
class VQDiffusionScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


1368
1369
1370
1371
1372
class EMAModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
1373
1374
1375
1376
1377
1378
1379
1380

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])