scheduling_sde_vp.py 3.46 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
import math
18
from typing import Union
19

Patrick von Platen's avatar
Patrick von Platen committed
20
21
import torch

22
from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import deprecate
Patrick von Platen's avatar
Patrick von Platen committed
24
25
26
27
from .scheduling_utils import SchedulerMixin


class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin):
28
29
30
    """
    The variance preserving stochastic differential equation (SDE) scheduler.

31
32
33
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
34
    [`~ConfigMixin.from_config`] functions.
35

36
37
38
39
40
41
    For more information, see the original paper: https://arxiv.org/abs/2011.13456

    UNDER CONSTRUCTION

    """

42
    @register_to_config
43
    def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3, **kwargs):
44
45
        deprecate(
            "tensor_format",
Patrick von Platen's avatar
Patrick von Platen committed
46
            "0.6.0",
47
48
49
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
        self.sigmas = None
        self.discrete_sigmas = None
        self.timesteps = None

54
55
    def set_timesteps(self, num_inference_steps, device: Union[str, torch.device] = None):
        self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device)
Patrick von Platen's avatar
Patrick von Platen committed
56

57
    def step_pred(self, score, x, t, generator=None):
58
59
60
61
62
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
63
        # TODO(Patrick) better comments + non-PyTorch
Nathan Lambert's avatar
Nathan Lambert committed
64
        # postprocess model score
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
        log_mean_coeff = (
            -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
        )
        std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff))
69
70
71
72
        std = std.flatten()
        while len(std.shape) < len(score.shape):
            std = std.unsqueeze(-1)
        score = -score / std
Patrick von Platen's avatar
Patrick von Platen committed
73

Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
77
        # compute
        dt = -1.0 / len(self.timesteps)

        beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
78
79
80
81
82
        beta_t = beta_t.flatten()
        while len(beta_t.shape) < len(x.shape):
            beta_t = beta_t.unsqueeze(-1)
        drift = -0.5 * beta_t * x

Patrick von Platen's avatar
Patrick von Platen committed
83
        diffusion = torch.sqrt(beta_t)
84
        drift = drift - diffusion**2 * score
Patrick von Platen's avatar
Patrick von Platen committed
85
        x_mean = x + drift * dt
Patrick von Platen's avatar
Patrick von Platen committed
86
87

        # add noise
88
89
        noise = torch.randn(x.shape, layout=x.layout, generator=generator).to(x.device)
        x = x_mean + diffusion * math.sqrt(-dt) * noise
Patrick von Platen's avatar
Patrick von Platen committed
90
91

        return x, x_mean
Nathan Lambert's avatar
Nathan Lambert committed
92
93
94

    def __len__(self):
        return self.config.num_train_timesteps