scheduling_sde_vp.py 1.92 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

# TODO(Patrick, Anton, Suraj) - make scheduler framework indepedent and clean-up a bit

import numpy as np
import torch

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin


class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin):
    def __init__(self, beta_min=0.1, beta_max=20, sampling_eps=1e-3, tensor_format="np"):
        super().__init__()
        self.register_to_config(
            beta_min=beta_min,
            beta_max=beta_max,
            sampling_eps=sampling_eps,
        )

        self.sigmas = None
        self.discrete_sigmas = None
        self.timesteps = None

    def set_timesteps(self, num_inference_steps):
        self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps)

    def step_pred(self, result, x, t):
        dt = -1. / len(self.timesteps)
        z = torch.randn_like(x)

        beta_t = self.beta_min + t * (self.beta_max - self.beta_min)
        drift = -0.5 * beta_t[:, None, None, None] * x
        diffusion = torch.sqrt(beta_t)

        drift = drift - diffusion[:, None, None, None] ** 2 * result

        x_mean = x + drift * dt
        x = x_mean + diffusion[:, None, None, None] * np.sqrt(-dt) * z

        return x, x_mean