vq_model.py 6.72 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
21
22
from ..utils import BaseOutput
from ..utils.accelerate_utils import apply_forward_hook
23
24
25
26
27
28
29
30
31
32
33
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer


@dataclass
class VQEncoderOutput(BaseOutput):
    """
    Output of VQModel encoding method.

    Args:
        latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
34
            The encoded output sample from the last layer of the model.
35
36
37
38
39
40
    """

    latents: torch.FloatTensor


class VQModel(ModelMixin, ConfigMixin):
Steven Liu's avatar
Steven Liu committed
41
42
    r"""
    A VQ-VAE model for decoding latent representations.
43

Steven Liu's avatar
Steven Liu committed
44
45
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
46
47
48
49

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
50
51
52
53
54
55
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
56
57
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
58
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
59
60
        num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
        vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
61
62
63
64
65
66
67
        scaling_factor (`float`, *optional*, defaults to `0.18215`):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    """

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 256,
        norm_num_groups: int = 32,
        vq_embed_dim: Optional[int] = None,
85
        scaling_factor: float = 0.18215,
YiYi Xu's avatar
YiYi Xu committed
86
        norm_type: str = "group",  # group, spatial
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=False,
        )

        vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels

        self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
        self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
        self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
117
            norm_type=norm_type,
118
119
        )

YiYi Xu's avatar
YiYi Xu committed
120
    @apply_forward_hook
121
122
123
124
125
126
127
128
129
    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
        h = self.encoder(x)
        h = self.quant_conv(h)

        if not return_dict:
            return (h,)

        return VQEncoderOutput(latents=h)

YiYi Xu's avatar
YiYi Xu committed
130
    @apply_forward_hook
131
132
133
134
135
    def decode(
        self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.FloatTensor]:
        # also go through quantization layer
        if not force_not_quantize:
Kashif Rasul's avatar
Kashif Rasul committed
136
            quant, _, _ = self.quantize(h)
137
138
        else:
            quant = h
YiYi Xu's avatar
YiYi Xu committed
139
140
        quant2 = self.post_quant_conv(quant)
        dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
141
142
143
144
145
146
147
148

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""
Steven Liu's avatar
Steven Liu committed
149
150
        The [`VQModel`] forward method.

151
152
153
        Args:
            sample (`torch.FloatTensor`): Input sample.
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
154
155
156
157
158
159
                Whether or not to return a [`models.vq_model.VQEncoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vq_model.VQEncoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vq_model.VQEncoderOutput`] is returned, otherwise a plain `tuple`
                is returned.
160
161
162
163
164
165
166
167
168
        """
        x = sample
        h = self.encode(x).latents
        dec = self.decode(h).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)