vq_model.py 6.63 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer


@dataclass
class VQEncoderOutput(BaseOutput):
    """
    Output of VQModel encoding method.

    Args:
        latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
33
            The encoded output sample from the last layer of the model.
34
35
36
37
38
39
    """

    latents: torch.FloatTensor


class VQModel(ModelMixin, ConfigMixin):
Steven Liu's avatar
Steven Liu committed
40
41
    r"""
    A VQ-VAE model for decoding latent representations.
42

Steven Liu's avatar
Steven Liu committed
43
44
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
45
46
47
48

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
49
50
51
52
53
54
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
55
56
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
57
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
58
59
        num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
        vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
60
61
62
63
64
65
66
        scaling_factor (`float`, *optional*, defaults to `0.18215`):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    """

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 256,
        norm_num_groups: int = 32,
        vq_embed_dim: Optional[int] = None,
84
        scaling_factor: float = 0.18215,
YiYi Xu's avatar
YiYi Xu committed
85
        norm_type: str = "group",  # group, spatial
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=False,
        )

        vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels

        self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
        self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
        self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
116
            norm_type=norm_type,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        )

    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
        h = self.encoder(x)
        h = self.quant_conv(h)

        if not return_dict:
            return (h,)

        return VQEncoderOutput(latents=h)

    def decode(
        self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.FloatTensor]:
        # also go through quantization layer
        if not force_not_quantize:
            quant, emb_loss, info = self.quantize(h)
        else:
            quant = h
YiYi Xu's avatar
YiYi Xu committed
136
137
        quant2 = self.post_quant_conv(quant)
        dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
138
139
140
141
142
143
144
145

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""
Steven Liu's avatar
Steven Liu committed
146
147
        The [`VQModel`] forward method.

148
149
150
        Args:
            sample (`torch.FloatTensor`): Input sample.
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
151
152
153
154
155
156
                Whether or not to return a [`models.vq_model.VQEncoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vq_model.VQEncoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vq_model.VQEncoderOutput`] is returned, otherwise a plain `tuple`
                is returned.
157
158
159
160
161
162
163
164
165
        """
        x = sample
        h = self.encode(x).latents
        dec = self.decode(h).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)