pipeline_ddim.py 4.23 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Sid Sahai's avatar
Sid Sahai committed
17
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
import torch

21
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
22
23


Patrick von Platen's avatar
Patrick von Platen committed
24
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
25
26
27
28
29
30
31
32
33
34
35
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

36
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
37
        super().__init__()
38
39
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
40

Patrick von Platen's avatar
Patrick von Platen committed
41
    @torch.no_grad()
42
43
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
44
45
46
47
48
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
        eta: float = 0.0,
        num_inference_steps: int = 50,
        output_type: Optional[str] = "pil",
49
50
51
        return_dict: bool = True,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
52
53
        r"""
        Args:
54
            batch_size (`int`, *optional*, defaults to 1):
Kashif Rasul's avatar
Kashif Rasul committed
55
                The number of images to generate.
56
            generator (`torch.Generator`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
57
58
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
59
            eta (`float`, *optional*, defaults to 0.0):
Kashif Rasul's avatar
Kashif Rasul committed
60
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
61
            num_inference_steps (`int`, *optional*, defaults to 50):
Kashif Rasul's avatar
Kashif Rasul committed
62
63
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
64
            output_type (`str`, *optional*, defaults to `"pil"`):
Kashif Rasul's avatar
Kashif Rasul committed
65
                The output format of the generate image. Choose between
66
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
67
            return_dict (`bool`, *optional*, defaults to `True`):
Kashif Rasul's avatar
Kashif Rasul committed
68
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
69
70
71
72
73

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
Kashif Rasul's avatar
Kashif Rasul committed
74
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
75

Patrick von Platen's avatar
Patrick von Platen committed
76
        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
77
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
78
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
79
80
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
81
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
82

83
84
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
85

hysts's avatar
hysts committed
86
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
87
            # 1. predict noise model_output
88
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
89

90
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
91
            # eta corresponds to η in paper and should be between [0, 1]
92
            # do x_t -> x_t-1
93
            image = self.scheduler.step(model_output, t, image, eta).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
94

95
96
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
97
98
        if output_type == "pil":
            image = self.numpy_to_pil(image)
99

100
101
102
103
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)