scheduling_deis_multistep.py 35.6 KB
Newer Older
1
# Copyright 2024 FLAIR Lab and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: check https://arxiv.org/abs/2204.13902 and https://github.com/qsh-zh/deis for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
30
31
32
33
34
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
35
36
37
38
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
47
48
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
49
50
51
52

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
53
    if alpha_transform_type == "cosine":
54

YiYi Xu's avatar
YiYi Xu committed
55
56
57
58
59
60
61
62
63
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
64
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
65
66
67
68
69

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
70
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
71
72
73
74
75
    return torch.tensor(betas, dtype=torch.float32)


class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
76
    `DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
77

78
79
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
80
81

    Args:
82
83
84
85
86
87
88
89
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
90
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        algorithm_type (`str`, defaults to `deis`):
            The algorithm type for the solver.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
111
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
112
113
             Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
             the sigmas are determined according to a sequence of noise levels {σi}.
114
115
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
116
117
118
119
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
120
            An offset added to the inference steps, as required by some model families.
121
122
    """

Kashif Rasul's avatar
Kashif Rasul committed
123
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "deis",
        solver_type: str = "logrho",
        lower_order_final: bool = True,
142
        use_karras_sigmas: Optional[bool] = False,
143
        use_exponential_sigmas: Optional[bool] = False,
144
145
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
146
    ):
147
148
        if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
149
150
151
152
153
154
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
155
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
156
157
158
159
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
160
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
161
162
163
164
165
166
167

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
168
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
169
170
171
172
173
174
175

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DEIS
        if algorithm_type not in ["deis"]:
            if algorithm_type in ["dpmsolver", "dpmsolver++"]:
176
                self.register_to_config(algorithm_type="deis")
177
            else:
178
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
179
180

        if solver_type not in ["logrho"]:
181
            if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
182
                self.register_to_config(solver_type="logrho")
183
            else:
184
                raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
185
186
187
188
189
190
191

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
192
        self._step_index = None
193
        self._begin_index = None
194
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
195
196
197
198

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
199
        The index counter for current timestep. It will increase 1 after each scheduler step.
200
201
        """
        return self._step_index
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

221
222
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
223
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
224
225
226

        Args:
            num_inference_steps (`int`):
227
228
229
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
230
        """
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
255

256
257
258
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
259
            sigmas = np.flip(sigmas).copy()
260
261
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
262
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
263
264
265
        elif self.config.use_exponential_sigmas:
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
266
267
268
269
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
270

271
272
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
273
274
275

        self.num_inference_steps = len(timesteps)

276
277
278
279
280
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

281
282
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
283
        self._begin_index = None
284
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
285

286
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
287
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
288
289
290
291
292
293
294
295
296
297
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
298
        batch_size, channels, *remaining_dims = sample.shape
299
300
301
302
303

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
304
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
305
306
307
308
309
310
311
312
313
314

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

315
        sample = sample.reshape(batch_size, channels, *remaining_dims)
316
317
318
        sample = sample.to(dtype)

        return sample
319

320
321
322
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
323
        log_sigma = np.log(np.maximum(sigma, 1e-10))
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
352
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
353
354
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
369
370
371
372
373
374
375
376

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
        return sigmas

399
    def convert_model_output(
400
        self,
401
        model_output: torch.Tensor,
402
        *args,
403
        sample: torch.Tensor = None,
404
        **kwargs,
405
    ) -> torch.Tensor:
406
        """
407
        Convert the model output to the corresponding type the DEIS algorithm needs.
408
409

        Args:
410
            model_output (`torch.Tensor`):
411
412
413
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
414
            sample (`torch.Tensor`):
415
                A current instance of a sample created by the diffusion process.
416
417

        Returns:
418
            `torch.Tensor`:
419
                The converted model output.
420
        """
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
436
437
438
439
440
441
442
443
444
445
446
447
448
        if self.config.prediction_type == "epsilon":
            x0_pred = (sample - sigma_t * model_output) / alpha_t
        elif self.config.prediction_type == "sample":
            x0_pred = model_output
        elif self.config.prediction_type == "v_prediction":
            x0_pred = alpha_t * sample - sigma_t * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction` for the DEISMultistepScheduler."
            )

        if self.config.thresholding:
449
            x0_pred = self._threshold_sample(x0_pred)
450
451
452
453
454
455
456
457

        if self.config.algorithm_type == "deis":
            return (sample - alpha_t * x0_pred) / sigma_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def deis_first_order_update(
        self,
458
        model_output: torch.Tensor,
459
        *args,
460
        sample: torch.Tensor = None,
461
        **kwargs,
462
    ) -> torch.Tensor:
463
464
465
466
        """
        One step for the first-order DEIS (equivalent to DDIM).

        Args:
467
            model_output (`torch.Tensor`):
468
469
470
471
472
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
473
            sample (`torch.Tensor`):
474
                A current instance of a sample created by the diffusion process.
475
476

        Returns:
477
            `torch.Tensor`:
478
                The sample tensor at the previous timestep.
479
        """
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

507
508
509
510
511
512
513
514
515
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "deis":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        else:
            raise NotImplementedError("only support log-rho multistep deis now")
        return x_t

    def multistep_deis_second_order_update(
        self,
516
        model_output_list: List[torch.Tensor],
517
        *args,
518
        sample: torch.Tensor = None,
519
        **kwargs,
520
    ) -> torch.Tensor:
521
522
523
524
        """
        One step for the second-order multistep DEIS.

        Args:
525
            model_output_list (`List[torch.Tensor]`):
526
                The direct outputs from learned diffusion model at current and latter timesteps.
527
            sample (`torch.Tensor`):
528
                A current instance of a sample created by the diffusion process.
529
530

        Returns:
531
            `torch.Tensor`:
532
                The sample tensor at the previous timestep.
533
        """
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        m0, m1 = model_output_list[-1], model_output_list[-2]

        rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c):
                # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}]
                return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c))

            coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1)
            coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1)
            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def multistep_deis_third_order_update(
        self,
585
        model_output_list: List[torch.Tensor],
586
        *args,
587
        sample: torch.Tensor = None,
588
        **kwargs,
589
    ) -> torch.Tensor:
590
591
592
593
        """
        One step for the third-order multistep DEIS.

        Args:
594
            model_output_list (`List[torch.Tensor]`):
595
                The direct outputs from learned diffusion model at current and latter timesteps.
596
            sample (`torch.Tensor`):
597
                A current instance of a sample created by diffusion process.
598
599

        Returns:
600
            `torch.Tensor`:
601
                The sample tensor at the previous timestep.
602
        """
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

637
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
638

639
640
641
642
        rho_t, rho_s0, rho_s1, rho_s2 = (
            sigma_t / alpha_t,
            sigma_s0 / alpha_s0,
            sigma_s1 / alpha_s1,
643
            sigma_s2 / alpha_s2,
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        )

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c, d):
                # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}]
                numerator = t * (
                    np.log(c) * (np.log(d) - np.log(t) + 1)
                    - np.log(d) * np.log(t)
                    + np.log(d)
                    + np.log(t) ** 2
                    - 2 * np.log(t)
                    + 2
                )
                denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d))
                return numerator / denominator

            coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2)
            coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0)
            coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2)

            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

671
672
673
674
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
675

676
        index_candidates = (schedule_timesteps == timestep).nonzero()
677
678
679
680
681
682
683
684
685
686
687
688

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

689
690
691
692
693
694
695
696
697
698
699
700
701
702
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
703

704
705
    def step(
        self,
706
        model_output: torch.Tensor,
707
        timestep: Union[int, torch.Tensor],
708
        sample: torch.Tensor,
709
710
711
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
712
713
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DEIS.
714
715

        Args:
716
            model_output (`torch.Tensor`):
717
                The direct output from learned diffusion model.
718
            timestep (`int`):
719
                The current discrete timestep in the diffusion chain.
720
            sample (`torch.Tensor`):
721
722
723
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
724
725

        Returns:
726
727
728
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
729
730
731
732
733
734
735

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

736
737
738
        if self.step_index is None:
            self._init_step_index(timestep)

739
        lower_order_final = (
740
            (self.step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
741
742
        )
        lower_order_second = (
743
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
744
745
        )

746
        model_output = self.convert_model_output(model_output, sample=sample)
747
748
749
750
751
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
752
            prev_sample = self.deis_first_order_update(model_output, sample=sample)
753
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
754
            prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample)
755
        else:
756
            prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample)
757
758
759
760

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

761
762
763
        # upon completion increase step index by one
        self._step_index += 1

764
765
766
767
768
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

769
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
770
771
772
773
774
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
775
            sample (`torch.Tensor`):
776
                The input sample.
777
778

        Returns:
779
            `torch.Tensor`:
780
                A scaled input sample.
781
782
783
        """
        return sample

784
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
785
786
    def add_noise(
        self,
787
788
        original_samples: torch.Tensor,
        noise: torch.Tensor,
789
        timesteps: torch.IntTensor,
790
    ) -> torch.Tensor:
791
792
793
794
795
796
797
798
799
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
800

801
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
802
803
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
804
805
806
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
807
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
808
            # add noise is called before first denoising step to create initial latent(img2img)
809
            step_indices = [self.begin_index] * timesteps.shape[0]
810

811
812
813
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
814

815
816
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
817
818
819
820
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps