denoise.py 24.2 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

YiYi Xu's avatar
YiYi Xu committed
15
from typing import Any, Dict, List, Tuple
Aryan's avatar
Aryan committed
16
17
18
19
20
21
22
23
24
25
26

import torch

from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance
from ...models import WanTransformer3DModel
from ...schedulers import UniPCMultistepScheduler
from ...utils import logging
from ..modular_pipeline import (
    BlockState,
    LoopSequentialPipelineBlocks,
27
    ModularPipelineBlocks,
Aryan's avatar
Aryan committed
28
29
    PipelineState,
)
YiYi Xu's avatar
YiYi Xu committed
30
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam
Aryan's avatar
Aryan committed
31
32
33
34
35
36
from .modular_pipeline import WanModularPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


YiYi Xu's avatar
YiYi Xu committed
37
class WanLoopBeforeDenoiser(ModularPipelineBlocks):
Aryan's avatar
Aryan committed
38
39
40
    model_name = "wan"

    @property
YiYi Xu's avatar
YiYi Xu committed
41
42
43
44
45
46
47
48
49
    def description(self) -> str:
        return (
            "step within the denoising loop that prepares the latent input for the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[InputParam]:
Aryan's avatar
Aryan committed
50
        return [
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
56
57
58
59
60
61
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "dtype",
                required=True,
                type_hint=torch.dtype,
                description="The dtype of the model inputs. Can be generated in input step.",
Aryan's avatar
Aryan committed
62
63
64
            ),
        ]

YiYi Xu's avatar
YiYi Xu committed
65
66
67
68
69
70
71
72
73
    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        block_state.latent_model_input = block_state.latents.to(block_state.dtype)
        return components, block_state


class WanImage2VideoLoopBeforeDenoiser(ModularPipelineBlocks):
    model_name = "wan"

Aryan's avatar
Aryan committed
74
75
76
    @property
    def description(self) -> str:
        return (
YiYi Xu's avatar
YiYi Xu committed
77
            "step within the denoising loop that prepares the latent input for the denoiser. "
Aryan's avatar
Aryan committed
78
79
80
81
82
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

    @property
YiYi Xu's avatar
YiYi Xu committed
83
    def inputs(self) -> List[InputParam]:
Aryan's avatar
Aryan committed
84
        return [
YiYi Xu's avatar
YiYi Xu committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "first_frame_latents",
                required=True,
                type_hint=torch.Tensor,
                description="The first frame latents to use for the denoising process. Can be generated in prepare_first_frame_latents step.",
            ),
            InputParam(
                "dtype",
                required=True,
                type_hint=torch.dtype,
                description="The dtype of the model inputs. Can be generated in input step.",
            ),
Aryan's avatar
Aryan committed
103
104
        ]

YiYi Xu's avatar
YiYi Xu committed
105
106
107
108
109
110
111
112
113
114
115
    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        block_state.latent_model_input = torch.cat([block_state.latents, block_state.first_frame_latents], dim=1).to(
            block_state.dtype
        )
        return components, block_state


class WanFLF2VLoopBeforeDenoiser(ModularPipelineBlocks):
    model_name = "wan"

Aryan's avatar
Aryan committed
116
    @property
YiYi Xu's avatar
YiYi Xu committed
117
118
119
120
121
122
123
124
125
    def description(self) -> str:
        return (
            "step within the denoising loop that prepares the latent input for the denoiser. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[InputParam]:
Aryan's avatar
Aryan committed
126
127
128
129
130
131
132
        return [
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
YiYi Xu's avatar
YiYi Xu committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            InputParam(
                "first_last_frame_latents",
                required=True,
                type_hint=torch.Tensor,
                description="The first and last frame latents to use for the denoising process. Can be generated in prepare_first_last_frame_latents step.",
            ),
            InputParam(
                "dtype",
                required=True,
                type_hint=torch.dtype,
                description="The dtype of the model inputs. Can be generated in input step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        block_state.latent_model_input = torch.cat(
            [block_state.latents, block_state.first_last_frame_latents], dim=1
        ).to(block_state.dtype)
        return components, block_state


class WanLoopDenoiser(ModularPipelineBlocks):
    model_name = "wan"

    def __init__(
        self,
        guider_input_fields: Dict[str, Any] = {"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds")},
    ):
        """Initialize a denoiser block that calls the denoiser model. This block is used in Wan2.1.

        Args:
            guider_input_fields: A dictionary that maps each argument expected by the denoiser model
                (for example, "encoder_hidden_states") to data stored on 'block_state'. The value can be either:

                - A tuple of strings. For instance, {"encoder_hidden_states": ("prompt_embeds",
                  "negative_prompt_embeds")} tells the guider to read `block_state.prompt_embeds` and
                  `block_state.negative_prompt_embeds` and pass them as the conditional and unconditional batches of
                  'encoder_hidden_states'.
                - A string. For example, {"encoder_hidden_image": "image_embeds"} makes the guider forward
                  `block_state.image_embeds` for both conditional and unconditional batches.
        """
        if not isinstance(guider_input_fields, dict):
            raise ValueError(f"guider_input_fields must be a dictionary but is {type(guider_input_fields)}")
        self._guider_input_fields = guider_input_fields
        super().__init__()

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 5.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("transformer", WanTransformer3DModel),
        ]

    @property
    def description(self) -> str:
        return (
            "Step within the denoising loop that denoise the latents with guidance. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        inputs = [
            InputParam("attention_kwargs"),
Aryan's avatar
Aryan committed
204
205
206
207
208
209
210
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]
YiYi Xu's avatar
YiYi Xu committed
211
212
213
214
215
216
217
218
219
220
        guider_input_names = []
        for value in self._guider_input_fields.values():
            if isinstance(value, tuple):
                guider_input_names.extend(value)
            else:
                guider_input_names.append(value)

        for name in guider_input_names:
            inputs.append(InputParam(name=name, required=True, type_hint=torch.Tensor))
        return inputs
Aryan's avatar
Aryan committed
221
222
223
224
225
226
227

    @torch.no_grad()
    def __call__(
        self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
    ) -> PipelineState:
        components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)

YiYi Xu's avatar
YiYi Xu committed
228
229
230
231
232
233
234
235
        # The guider splits model inputs into separate batches for conditional/unconditional predictions.
        # For CFG with guider_inputs = {"encoder_hidden_states": (prompt_embeds, negative_prompt_embeds)}:
        # you will get a guider_state with two batches:
        #   guider_state = [
        #       {"encoder_hidden_states": prompt_embeds, "__guidance_identifier__": "pred_cond"},      # conditional batch
        #       {"encoder_hidden_states": negative_prompt_embeds, "__guidance_identifier__": "pred_uncond"},  # unconditional batch
        #   ]
        # Other guidance methods may return 1 batch (no guidance) or 3+ batches (e.g., PAG, APG).
YiYi Xu's avatar
YiYi Xu committed
236
        guider_state = components.guider.prepare_inputs_from_block_state(block_state, self._guider_input_fields)
Aryan's avatar
Aryan committed
237
238
239
240

        # run the denoiser for each guidance batch
        for guider_state_batch in guider_state:
            components.guider.prepare_models(components.transformer)
YiYi Xu's avatar
YiYi Xu committed
241
242
243
244
245
246
            cond_kwargs = guider_state_batch.as_dict()
            cond_kwargs = {
                k: v.to(block_state.dtype) if isinstance(v, torch.Tensor) else v
                for k, v in cond_kwargs.items()
                if k in self._guider_input_fields.keys()
            }
Aryan's avatar
Aryan committed
247
248
249
250

            # Predict the noise residual
            # store the noise_pred in guider_state_batch so that we can apply guidance across all batches
            guider_state_batch.noise_pred = components.transformer(
YiYi Xu's avatar
YiYi Xu committed
251
252
                hidden_states=block_state.latent_model_input.to(block_state.dtype),
                timestep=t.expand(block_state.latent_model_input.shape[0]).to(block_state.dtype),
Aryan's avatar
Aryan committed
253
254
                attention_kwargs=block_state.attention_kwargs,
                return_dict=False,
YiYi Xu's avatar
YiYi Xu committed
255
                **cond_kwargs,
Aryan's avatar
Aryan committed
256
257
258
259
            )[0]
            components.guider.cleanup_models(components.transformer)

        # Perform guidance
260
        block_state.noise_pred = components.guider(guider_state)[0]
Aryan's avatar
Aryan committed
261
262
263
264

        return components, block_state


YiYi Xu's avatar
YiYi Xu committed
265
class Wan22LoopDenoiser(ModularPipelineBlocks):
Aryan's avatar
Aryan committed
266
267
    model_name = "wan"

YiYi Xu's avatar
YiYi Xu committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def __init__(
        self,
        guider_input_fields: Dict[str, Any] = {"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds")},
    ):
        """Initialize a denoiser block that calls the denoiser model. This block is used in Wan2.2.

        Args:
            guider_input_fields: A dictionary that maps each argument expected by the denoiser model
                (for example, "encoder_hidden_states") to data stored on `block_state`. The value can be either:

                - A tuple of strings. For instance, `{"encoder_hidden_states": ("prompt_embeds",
                  "negative_prompt_embeds")}` tells the guider to read `block_state.prompt_embeds` and
                  `block_state.negative_prompt_embeds` and pass them as the conditional and unconditional batches of
                  `encoder_hidden_states`.
                - A string. For example, `{"encoder_hidden_image": "image_embeds"}` makes the guider forward
                  `block_state.image_embeds` for both conditional and unconditional batches.
        """
        if not isinstance(guider_input_fields, dict):
            raise ValueError(f"guider_input_fields must be a dictionary but is {type(guider_input_fields)}")
        self._guider_input_fields = guider_input_fields
        super().__init__()

Aryan's avatar
Aryan committed
290
291
292
    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
YiYi Xu's avatar
YiYi Xu committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 4.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec(
                "guider_2",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 3.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("transformer", WanTransformer3DModel),
            ComponentSpec("transformer_2", WanTransformer3DModel),
Aryan's avatar
Aryan committed
307
308
309
310
311
        ]

    @property
    def description(self) -> str:
        return (
YiYi Xu's avatar
YiYi Xu committed
312
            "Step within the denoising loop that denoise the latents with guidance. "
Aryan's avatar
Aryan committed
313
314
315
316
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

YiYi Xu's avatar
YiYi Xu committed
317
318
319
320
321
322
323
324
325
326
    @property
    def expected_configs(self) -> List[ConfigSpec]:
        return [
            ConfigSpec(
                name="boundary_ratio",
                default=0.875,
                description="The boundary ratio to divide the denoising loop into high noise and low noise stages.",
            ),
        ]

Aryan's avatar
Aryan committed
327
328
    @property
    def inputs(self) -> List[Tuple[str, Any]]:
YiYi Xu's avatar
YiYi Xu committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        inputs = [
            InputParam("attention_kwargs"),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]
        guider_input_names = []
        for value in self._guider_input_fields.values():
            if isinstance(value, tuple):
                guider_input_names.extend(value)
            else:
                guider_input_names.append(value)

        for name in guider_input_names:
            inputs.append(InputParam(name=name, required=True, type_hint=torch.Tensor))
        return inputs

    @torch.no_grad()
    def __call__(
        self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
    ) -> PipelineState:
        boundary_timestep = components.config.boundary_ratio * components.num_train_timesteps
        if t >= boundary_timestep:
            block_state.current_model = components.transformer
            block_state.guider = components.guider
        else:
            block_state.current_model = components.transformer_2
            block_state.guider = components.guider_2

        block_state.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)

        # The guider splits model inputs into separate batches for conditional/unconditional predictions.
        # For CFG with guider_inputs = {"encoder_hidden_states": (prompt_embeds, negative_prompt_embeds)}:
        # you will get a guider_state with two batches:
        #   guider_state = [
        #       {"encoder_hidden_states": prompt_embeds, "__guidance_identifier__": "pred_cond"},      # conditional batch
        #       {"encoder_hidden_states": negative_prompt_embeds, "__guidance_identifier__": "pred_uncond"},  # unconditional batch
        #   ]
        # Other guidance methods may return 1 batch (no guidance) or 3+ batches (e.g., PAG, APG).
        guider_state = block_state.guider.prepare_inputs_from_block_state(block_state, self._guider_input_fields)

        # run the denoiser for each guidance batch
        for guider_state_batch in guider_state:
            block_state.guider.prepare_models(block_state.current_model)
            cond_kwargs = guider_state_batch.as_dict()
            cond_kwargs = {
                k: v.to(block_state.dtype) if isinstance(v, torch.Tensor) else v
                for k, v in cond_kwargs.items()
                if k in self._guider_input_fields.keys()
            }

            # Predict the noise residual
            # store the noise_pred in guider_state_batch so that we can apply guidance across all batches
            guider_state_batch.noise_pred = block_state.current_model(
                hidden_states=block_state.latent_model_input.to(block_state.dtype),
                timestep=t.expand(block_state.latent_model_input.shape[0]).to(block_state.dtype),
                attention_kwargs=block_state.attention_kwargs,
                return_dict=False,
                **cond_kwargs,
            )[0]
            block_state.guider.cleanup_models(block_state.current_model)

        # Perform guidance
        block_state.noise_pred = block_state.guider(guider_state)[0]

        return components, block_state


class WanLoopAfterDenoiser(ModularPipelineBlocks):
    model_name = "wan"
Aryan's avatar
Aryan committed
402
403

    @property
YiYi Xu's avatar
YiYi Xu committed
404
    def expected_components(self) -> List[ComponentSpec]:
Aryan's avatar
Aryan committed
405
        return [
YiYi Xu's avatar
YiYi Xu committed
406
            ComponentSpec("scheduler", UniPCMultistepScheduler),
Aryan's avatar
Aryan committed
407
408
409
        ]

    @property
YiYi Xu's avatar
YiYi Xu committed
410
411
412
413
414
415
    def description(self) -> str:
        return (
            "step within the denoising loop that update the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )
Aryan's avatar
Aryan committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        # Perform scheduler step using the predicted output
        latents_dtype = block_state.latents.dtype
        block_state.latents = components.scheduler.step(
            block_state.noise_pred.float(),
            t,
            block_state.latents.float(),
            return_dict=False,
        )[0]

        if block_state.latents.dtype != latents_dtype:
            block_state.latents = block_state.latents.to(latents_dtype)

        return components, block_state


class WanDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "wan"

    @property
    def description(self) -> str:
        return (
            "Pipeline block that iteratively denoise the latents over `timesteps`. "
            "The specific steps with each iteration can be customized with `sub_blocks` attributes"
        )

    @property
    def loop_expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", UniPCMultistepScheduler),
        ]

    @property
YiYi Xu's avatar
YiYi Xu committed
451
    def loop_inputs(self) -> List[InputParam]:
Aryan's avatar
Aryan committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.num_warmup_steps = max(
            len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
        )

        with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
            for i, t in enumerate(block_state.timesteps):
                components, block_state = self.loop_step(components, block_state, i=i, t=t)
                if i == len(block_state.timesteps) - 1 or (
                    (i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
                ):
                    progress_bar.update()

        self.set_block_state(state, block_state)

        return components, state


class WanDenoiseStep(WanDenoiseLoopWrapper):
    block_classes = [
YiYi Xu's avatar
YiYi Xu committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        WanLoopBeforeDenoiser,
        WanLoopDenoiser(
            guider_input_fields={
                "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
            }
        ),
        WanLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
            " - `WanLoopBeforeDenoiser`\n"
            " - `WanLoopDenoiser`\n"
            " - `WanLoopAfterDenoiser`\n"
            "This block supports text-to-video tasks for wan2.1."
        )


class Wan22DenoiseStep(WanDenoiseLoopWrapper):
    block_classes = [
        WanLoopBeforeDenoiser,
        Wan22LoopDenoiser(
            guider_input_fields={
                "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
            }
        ),
        WanLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
            " - `WanLoopBeforeDenoiser`\n"
            " - `Wan22LoopDenoiser`\n"
            " - `WanLoopAfterDenoiser`\n"
            "This block supports text-to-video tasks for Wan2.2."
        )


class WanImage2VideoDenoiseStep(WanDenoiseLoopWrapper):
    block_classes = [
        WanImage2VideoLoopBeforeDenoiser,
        WanLoopDenoiser(
            guider_input_fields={
                "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
                "encoder_hidden_states_image": "image_embeds",
            }
        ),
        WanLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
            " - `WanImage2VideoLoopBeforeDenoiser`\n"
            " - `WanLoopDenoiser`\n"
            " - `WanLoopAfterDenoiser`\n"
            "This block supports image-to-video tasks for wan2.1."
        )


class Wan22Image2VideoDenoiseStep(WanDenoiseLoopWrapper):
    block_classes = [
        WanImage2VideoLoopBeforeDenoiser,
        Wan22LoopDenoiser(
            guider_input_fields={
                "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
            }
        ),
        WanLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
            " - `WanImage2VideoLoopBeforeDenoiser`\n"
            " - `WanLoopDenoiser`\n"
            " - `WanLoopAfterDenoiser`\n"
            "This block supports image-to-video tasks for Wan2.2."
        )


class WanFLF2VDenoiseStep(WanDenoiseLoopWrapper):
    block_classes = [
        WanFLF2VLoopBeforeDenoiser,
        WanLoopDenoiser(
            guider_input_fields={
                "encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
                "encoder_hidden_states_image": "image_embeds",
            }
        ),
Aryan's avatar
Aryan committed
598
599
600
601
602
603
604
605
606
        WanLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
co63oc's avatar
co63oc committed
607
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
YiYi Xu's avatar
YiYi Xu committed
608
            " - `WanFLF2VLoopBeforeDenoiser`\n"
Aryan's avatar
Aryan committed
609
610
            " - `WanLoopDenoiser`\n"
            " - `WanLoopAfterDenoiser`\n"
YiYi Xu's avatar
YiYi Xu committed
611
            "This block supports FLF2V tasks for wan2.1."
Aryan's avatar
Aryan committed
612
        )