"vscode:/vscode.git/clone" did not exist on "56de8a6ba30855fdb8c6bd785cfcbec6f45d28d8"
classifier_free_guidance.py 6.21 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
YiYi Xu's avatar
YiYi Xu committed
16
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
17
18
19
20

import torch

from ..configuration_utils import register_to_config
21
from .guider_utils import BaseGuidance, GuiderOutput, rescale_noise_cfg
YiYi Xu's avatar
YiYi Xu committed
22
23
24
25
26
27
28
29


if TYPE_CHECKING:
    from ..modular_pipelines.modular_pipeline import BlockState


class ClassifierFreeGuidance(BaseGuidance):
    """
YiYi Xu's avatar
YiYi Xu committed
30
    Implements Classifier-Free Guidance (CFG) for diffusion models.
YiYi Xu's avatar
YiYi Xu committed
31

YiYi Xu's avatar
YiYi Xu committed
32
    Reference: https://huggingface.co/papers/2207.12598
YiYi Xu's avatar
YiYi Xu committed
33

YiYi Xu's avatar
YiYi Xu committed
34
35
36
    CFG improves generation quality and prompt adherence by jointly training models on both conditional and
    unconditional data, then combining predictions during inference. This allows trading off between quality (high
    guidance) and diversity (low guidance).
YiYi Xu's avatar
YiYi Xu committed
37

YiYi Xu's avatar
YiYi Xu committed
38
    **Two CFG Formulations:**
YiYi Xu's avatar
YiYi Xu committed
39

YiYi Xu's avatar
YiYi Xu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    1. **Original formulation** (from paper):
       ```
       x_pred = x_cond + guidance_scale * (x_cond - x_uncond)
       ```
       Moves conditional predictions further from unconditional ones.

    2. **Diffusers-native formulation** (default, from Imagen paper):
       ```
       x_pred = x_uncond + guidance_scale * (x_cond - x_uncond)
       ```
       Moves unconditional predictions toward conditional ones, effectively suppressing negative features (e.g., "bad
       quality", "watermarks"). Equivalent in theory but more intuitive.

    Use `use_original_formulation=True` to switch to the original formulation.
YiYi Xu's avatar
YiYi Xu committed
54
55
56

    Args:
        guidance_scale (`float`, defaults to `7.5`):
YiYi Xu's avatar
YiYi Xu committed
57
58
            CFG scale applied by this guider during post-processing. Higher values = stronger prompt conditioning but
            may reduce quality. Typical range: 1.0-20.0.
YiYi Xu's avatar
YiYi Xu committed
59
        guidance_rescale (`float`, defaults to `0.0`):
YiYi Xu's avatar
YiYi Xu committed
60
61
62
            Rescaling factor to prevent overexposure from high guidance scales. Based on [Common Diffusion Noise
            Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). Range: 0.0 (no rescaling)
            to 1.0 (full rescaling).
YiYi Xu's avatar
YiYi Xu committed
63
        use_original_formulation (`bool`, defaults to `False`):
YiYi Xu's avatar
YiYi Xu committed
64
65
            If `True`, uses the original CFG formulation from the paper. If `False` (default), uses the
            diffusers-native formulation from the Imagen paper.
YiYi Xu's avatar
YiYi Xu committed
66
        start (`float`, defaults to `0.0`):
YiYi Xu's avatar
YiYi Xu committed
67
68
            Fraction of denoising steps (0.0-1.0) after which CFG starts. Use > 0.0 to disable CFG in early denoising
            steps.
YiYi Xu's avatar
YiYi Xu committed
69
        stop (`float`, defaults to `1.0`):
YiYi Xu's avatar
YiYi Xu committed
70
71
72
73
            Fraction of denoising steps (0.0-1.0) after which CFG stops. Use < 1.0 to disable CFG in late denoising
            steps.
        enabled (`bool`, defaults to `True`):
            Whether CFG is enabled. Set to `False` to disable CFG entirely (uses only conditional predictions).
YiYi Xu's avatar
YiYi Xu committed
74
75
76
77
78
79
80
81
82
83
84
85
    """

    _input_predictions = ["pred_cond", "pred_uncond"]

    @register_to_config
    def __init__(
        self,
        guidance_scale: float = 7.5,
        guidance_rescale: float = 0.0,
        use_original_formulation: bool = False,
        start: float = 0.0,
        stop: float = 1.0,
YiYi Xu's avatar
YiYi Xu committed
86
        enabled: bool = True,
YiYi Xu's avatar
YiYi Xu committed
87
    ):
YiYi Xu's avatar
YiYi Xu committed
88
        super().__init__(start, stop, enabled)
YiYi Xu's avatar
YiYi Xu committed
89
90
91
92
93

        self.guidance_scale = guidance_scale
        self.guidance_rescale = guidance_rescale
        self.use_original_formulation = use_original_formulation

YiYi Xu's avatar
YiYi Xu committed
94
    def prepare_inputs(self, data: Dict[str, Tuple[torch.Tensor, torch.Tensor]]) -> List["BlockState"]:
YiYi Xu's avatar
YiYi Xu committed
95
96
        tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
        data_batches = []
YiYi Xu's avatar
YiYi Xu committed
97
98
        for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
            data_batch = self._prepare_batch(data, tuple_idx, input_prediction)
YiYi Xu's avatar
YiYi Xu committed
99
100
101
            data_batches.append(data_batch)
        return data_batches

YiYi Xu's avatar
YiYi Xu committed
102
103
104
105
106
107
108
109
110
111
    def prepare_inputs_from_block_state(
        self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
    ) -> List["BlockState"]:
        tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
        data_batches = []
        for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
            data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
            data_batches.append(data_batch)
        return data_batches

112
    def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
YiYi Xu's avatar
YiYi Xu committed
113
114
115
116
117
118
119
120
121
122
123
124
        pred = None

        if not self._is_cfg_enabled():
            pred = pred_cond
        else:
            shift = pred_cond - pred_uncond
            pred = pred_cond if self.use_original_formulation else pred_uncond
            pred = pred + self.guidance_scale * shift

        if self.guidance_rescale > 0.0:
            pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)

125
        return GuiderOutput(pred=pred, pred_cond=pred_cond, pred_uncond=pred_uncond)
YiYi Xu's avatar
YiYi Xu committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    @property
    def is_conditional(self) -> bool:
        return self._count_prepared == 1

    @property
    def num_conditions(self) -> int:
        num_conditions = 1
        if self._is_cfg_enabled():
            num_conditions += 1
        return num_conditions

    def _is_cfg_enabled(self) -> bool:
        if not self._enabled:
            return False

        is_within_range = True
        if self._num_inference_steps is not None:
            skip_start_step = int(self._start * self._num_inference_steps)
            skip_stop_step = int(self._stop * self._num_inference_steps)
            is_within_range = skip_start_step <= self._step < skip_stop_step

        is_close = False
        if self.use_original_formulation:
            is_close = math.isclose(self.guidance_scale, 0.0)
        else:
            is_close = math.isclose(self.guidance_scale, 1.0)

        return is_within_range and not is_close