# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import torch from ..configuration_utils import register_to_config from .guider_utils import BaseGuidance, GuiderOutput, rescale_noise_cfg if TYPE_CHECKING: from ..modular_pipelines.modular_pipeline import BlockState class ClassifierFreeGuidance(BaseGuidance): """ Implements Classifier-Free Guidance (CFG) for diffusion models. Reference: https://huggingface.co/papers/2207.12598 CFG improves generation quality and prompt adherence by jointly training models on both conditional and unconditional data, then combining predictions during inference. This allows trading off between quality (high guidance) and diversity (low guidance). **Two CFG Formulations:** 1. **Original formulation** (from paper): ``` x_pred = x_cond + guidance_scale * (x_cond - x_uncond) ``` Moves conditional predictions further from unconditional ones. 2. **Diffusers-native formulation** (default, from Imagen paper): ``` x_pred = x_uncond + guidance_scale * (x_cond - x_uncond) ``` Moves unconditional predictions toward conditional ones, effectively suppressing negative features (e.g., "bad quality", "watermarks"). Equivalent in theory but more intuitive. Use `use_original_formulation=True` to switch to the original formulation. Args: guidance_scale (`float`, defaults to `7.5`): CFG scale applied by this guider during post-processing. Higher values = stronger prompt conditioning but may reduce quality. Typical range: 1.0-20.0. guidance_rescale (`float`, defaults to `0.0`): Rescaling factor to prevent overexposure from high guidance scales. Based on [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). Range: 0.0 (no rescaling) to 1.0 (full rescaling). use_original_formulation (`bool`, defaults to `False`): If `True`, uses the original CFG formulation from the paper. If `False` (default), uses the diffusers-native formulation from the Imagen paper. start (`float`, defaults to `0.0`): Fraction of denoising steps (0.0-1.0) after which CFG starts. Use > 0.0 to disable CFG in early denoising steps. stop (`float`, defaults to `1.0`): Fraction of denoising steps (0.0-1.0) after which CFG stops. Use < 1.0 to disable CFG in late denoising steps. enabled (`bool`, defaults to `True`): Whether CFG is enabled. Set to `False` to disable CFG entirely (uses only conditional predictions). """ _input_predictions = ["pred_cond", "pred_uncond"] @register_to_config def __init__( self, guidance_scale: float = 7.5, guidance_rescale: float = 0.0, use_original_formulation: bool = False, start: float = 0.0, stop: float = 1.0, enabled: bool = True, ): super().__init__(start, stop, enabled) self.guidance_scale = guidance_scale self.guidance_rescale = guidance_rescale self.use_original_formulation = use_original_formulation def prepare_inputs(self, data: Dict[str, Tuple[torch.Tensor, torch.Tensor]]) -> List["BlockState"]: tuple_indices = [0] if self.num_conditions == 1 else [0, 1] data_batches = [] for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions): data_batch = self._prepare_batch(data, tuple_idx, input_prediction) data_batches.append(data_batch) return data_batches def prepare_inputs_from_block_state( self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]] ) -> List["BlockState"]: tuple_indices = [0] if self.num_conditions == 1 else [0, 1] data_batches = [] for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions): data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction) data_batches.append(data_batch) return data_batches def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput: pred = None if not self._is_cfg_enabled(): pred = pred_cond else: shift = pred_cond - pred_uncond pred = pred_cond if self.use_original_formulation else pred_uncond pred = pred + self.guidance_scale * shift if self.guidance_rescale > 0.0: pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale) return GuiderOutput(pred=pred, pred_cond=pred_cond, pred_uncond=pred_uncond) @property def is_conditional(self) -> bool: return self._count_prepared == 1 @property def num_conditions(self) -> int: num_conditions = 1 if self._is_cfg_enabled(): num_conditions += 1 return num_conditions def _is_cfg_enabled(self) -> bool: if not self._enabled: return False is_within_range = True if self._num_inference_steps is not None: skip_start_step = int(self._start * self._num_inference_steps) skip_stop_step = int(self._stop * self._num_inference_steps) is_within_range = skip_start_step <= self._step < skip_stop_step is_close = False if self.use_original_formulation: is_close = math.isclose(self.guidance_scale, 0.0) else: is_close = math.isclose(self.guidance_scale, 1.0) return is_within_range and not is_close