test_pipelines.py 85.4 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
import sys
22
import tempfile
23
import traceback
24
import unittest
25
import unittest.mock as mock
26
27

import numpy as np
Anh71me's avatar
Anh71me committed
28
import PIL.Image
29
import requests_mock
30
import safetensors.torch
31
import torch
32
import torch.nn as nn
33
34
from parameterized import parameterized
from PIL import Image
35
from requests.exceptions import HTTPError
36
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
37

38
from diffusers import (
39
    AutoencoderKL,
40
    ConfigMixin,
41
42
43
44
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
45
    DiffusionPipeline,
46
47
48
49
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
50
    ModelMixin,
51
    PNDMScheduler,
52
    StableDiffusionImg2ImgPipeline,
53
    StableDiffusionInpaintPipelineLegacy,
54
    StableDiffusionPipeline,
55
    UNet2DConditionModel,
56
    UNet2DModel,
57
    UniPCMultistepScheduler,
58
    logging,
59
)
Sayak Paul's avatar
Sayak Paul committed
60
from diffusers.pipelines.pipeline_utils import _get_pipeline_class
61
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
62
63
64
65
from diffusers.utils import (
    CONFIG_NAME,
    WEIGHTS_NAME,
)
66
67
from diffusers.utils.testing_utils import (
    CaptureLogger,
68
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
69
    floats_tensor,
70
    get_python_version,
71
    get_tests_dir,
72
    is_torch_compile,
73
    load_numpy,
Dhruv Nair's avatar
Dhruv Nair committed
74
    nightly,
75
76
    require_compel,
    require_flax,
77
    require_onnxruntime,
Dhruv Nair's avatar
Dhruv Nair committed
78
    require_torch_2,
79
    require_torch_gpu,
80
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
81
82
    slow,
    torch_device,
83
)
Dhruv Nair's avatar
Dhruv Nair committed
84
from diffusers.utils.torch_utils import is_compiled_module
85
86


87
enable_full_determinism()
88
89


90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        model = torch.compile(model)
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
108
109
110
111
112

        # previous diffusers versions stripped compilation off
        # compiled modules
        assert is_compiled_module(ddpm.unet)

113
114
115
116
117
118
119
120
121
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
122
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
123
124

        generator = torch.Generator(device=torch_device).manual_seed(0)
125
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
126

127
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
128
129
130
131
132
133
134
135
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


136
137
138
class CustomEncoder(ModelMixin, ConfigMixin):
    def __init__(self):
        super().__init__()
139
        self.linear = nn.Linear(3, 3)
140
141
142
143
144
145
146
147


class CustomPipeline(DiffusionPipeline):
    def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler):
        super().__init__()
        self.register_modules(encoder=encoder, scheduler=scheduler)


148
class DownloadTests(unittest.TestCase):
149
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
150
151
152
153
154
155
156
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
157
                DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
158
159

            download_requests = [r.method for r in m.request_history]
160
            assert download_requests.count("HEAD") == 15, "15 calls to files"
161
162
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
            assert (
163
                len(download_requests) == 32
164
165
166
167
168
169
170
171
            ), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
172
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
173
174
175
176
177
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def test_less_downloads_passed_object(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            cached_folder = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            # make sure safety checker is not downloaded
            assert "safety_checker" not in os.listdir(cached_folder)

            # make sure rest is downloaded
            assert "unet" in os.listdir(cached_folder)
            assert "tokenizer" in os.listdir(cached_folder)
            assert "vae" in os.listdir(cached_folder)
            assert "model_index.json" in os.listdir(cached_folder)
            assert "scheduler" in os.listdir(cached_folder)
            assert "feature_extractor" in os.listdir(cached_folder)

195
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    def test_less_downloads_passed_object_calls(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            # 15 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("HEAD") == 13, "13 calls to files"
            # 17 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
            assert (
                len(download_requests) == 28
            ), "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

228
229
230
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
231
            tmpdirname = DiffusionPipeline.download(
232
233
234
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

235
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
236
237
238
239
240
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
241
242
243
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

244
245
246
247
248
249
250
251
252
253
254
    def test_force_safetensors_error(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            with self.assertRaises(EnvironmentError):
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
                    safety_checker=None,
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                )

255
256
257
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
258
            tmpdirname = DiffusionPipeline.download(
259
260
261
262
263
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

264
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
265
266
267
268
269
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    def test_download_safetensors_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "safetensors" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".safetensors" in f]) == 8
                assert not any(".bin" in f for f in files)

    def test_download_bin_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=False,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "bin" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".bin" in f]) == 8
                assert not any(".safetensors" in f for f in files)

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    def test_download_no_openvino_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-open-vino",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # make sure that by default no openvino weights are downloaded
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any("openvino_" in f for f in files)

    def test_download_no_onnx_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
336
                "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
337
                cache_dir=tmpdirname,
338
                use_safetensors=False,
339
340
341
342
343
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

344
            # make sure that by default no onnx weights are downloaded for non-ONNX pipelines
345
346
347
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any((f.endswith(".onnx") or f.endswith(".pb")) for f in files)

348
349
    @require_onnxruntime
    def test_download_onnx_by_default_for_onnx_pipelines(self):
350
351
352
353
354
355
356
357
358
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

359
            # make sure that by default onnx weights are downloaded for ONNX pipelines
360
361
362
363
            assert any((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert any((f.endswith(".onnx")) for f in files)
            assert any((f.endswith(".pb")) for f in files)

364
365
366
367
368
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
369
        pipe = pipe.to(torch_device)
370
        generator = torch.manual_seed(0)
371
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
372
373

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
374
        pipe_2 = pipe_2.to(torch_device)
375
        generator = torch.manual_seed(0)
376
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
377
378
379
380
381
382
383
384

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
385
        pipe = pipe.to(torch_device)
386
        generator = torch.manual_seed(0)
387
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
388
389
390
391

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
392
            pipe_2 = pipe_2.to(torch_device)
393

394
            generator = torch.manual_seed(0)
395

396
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
397
398
399
400
401
402

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
403
        pipe = pipe.to(torch_device)
404
405

        generator = torch.manual_seed(0)
406
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
407
408
409
410

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
411
            pipe_2 = pipe_2.to(torch_device)
412

413
            generator = torch.manual_seed(0)
414

415
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
416
417
418

        assert np.max(np.abs(out - out_2)) < 1e-3

419
420
421
422
423
424
425
426
427
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
428
        orig_pipe = DiffusionPipeline.from_pretrained(
429
430
431
432
433
434
435
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
436
            pipe = DiffusionPipeline.from_pretrained(
437
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
438
439
440
441
442
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_local_files_only_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # first check that with local files only the pipeline can only be used if cached
        with self.assertRaises(FileNotFoundError):
            with tempfile.TemporaryDirectory() as tmpdirname:
                orig_pipe = DiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True, cache_dir=tmpdirname
                )

        # now download
        orig_pipe = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-torch")

        # make sure it can be loaded with local_files_only
        orig_pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to connect to the internet.
        # Make sure it works local_files_only only works here!
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
479
480
481
482
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
483
484
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
485
            with tempfile.TemporaryDirectory() as tmpdirname:
486
                tmpdirname = StableDiffusionPipeline.download(
487
488
489
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
490
                )
491
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
492
493
494
495
496
497
498
499
500
501
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

    def test_download_variant_all(self):
502
503
504
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
505
506
507
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
508
                tmpdirname = StableDiffusionPipeline.download(
509
510
511
512
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
513
                )
514
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
515
516
517
518
519
520
521
522
523
524
525
526
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

    def test_download_variant_partly(self):
527
528
529
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
530
531
532
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
533
                tmpdirname = StableDiffusionPipeline.download(
534
535
536
537
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
538
                )
539
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
540
541
                files = [item for sublist in all_root_files for item in sublist]

542
                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
543
544
545
546
547
548
549
550
551
552
553

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)

554
555
556
557
558
559
560
561
    def test_download_safetensors_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = True

        # text encoder is missing no variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
562
                    "hf-internal-testing/stable-diffusion-broken-variants",
563
564
                    cache_dir=tmpdirname,
                    variant=variant,
565
                    use_safetensors=use_safetensors,
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
                )
            assert "Error no file name" in str(error_context.exception)

        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"

    def test_download_bin_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = False

        # text encoder is missing Non-variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
592
                    cache_dir=tmpdirname,
593
594
                    variant=variant,
                    use_safetensors=use_safetensors,
595
                )
596
            assert "Error no file name" in str(error_context.exception)
597

598
599
600
601
602
603
604
605
606
607
608
609
610
        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def test_download_safetensors_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = True

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )

            assert "Error no file name" in str(error_context.exception)

    def test_download_bin_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = False

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )
            assert "Error no file name" in str(error_context.exception)
642

643
644
645
646
647
648
649
650
651
652
653
654
    def test_local_save_load_index(self):
        prompt = "hello"
        for variant in [None, "fp16"]:
            for use_safe in [True, False]:
                pipe = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    variant=variant,
                    use_safetensors=use_safe,
                    safety_checker=None,
                )
                pipe = pipe.to(torch_device)
                generator = torch.manual_seed(0)
655
                out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
656
657
658
659
660
661
662
663
664
665

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pipe.save_pretrained(tmpdirname)
                    pipe_2 = StableDiffusionPipeline.from_pretrained(
                        tmpdirname, safe_serialization=use_safe, variant=variant
                    )
                    pipe_2 = pipe_2.to(torch_device)

                generator = torch.manual_seed(0)

666
                out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
667
668
669

                assert np.max(np.abs(out - out_2)) < 1e-3

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    def test_text_inversion_download(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe = pipe.to(torch_device)

        num_tokens = len(pipe.tokenizer)

        # single token load local
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<*>": torch.ones((32,))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<*>")
            assert token == num_tokens, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
            assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"

            prompt = "hey <*>"
691
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
            assert out.shape == (1, 128, 128, 3)

        # single token load local with weight name
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<**>": 2 * torch.ones((1, 32))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<**>")
            assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
            assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"

            prompt = "hey <**>"
707
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
            assert out.shape == (1, 128, 128, 3)

        # multi token load
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<***>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")

            assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
727
            assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
728
729

            prompt = "hey <***>"
730
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
            assert out.shape == (1, 128, 128, 3)

        # multi token load a1111
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {
                "string_to_param": {
                    "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
                },
                "name": "<****>",
            }
            torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<****>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")

            assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
755
            assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
756
757

            prompt = "hey <****>"
758
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
759
760
            assert out.shape == (1, 128, 128, 3)

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        # multi embedding load
        with tempfile.TemporaryDirectory() as tmpdirname1:
            with tempfile.TemporaryDirectory() as tmpdirname2:
                ten = {"<*****>": torch.ones((32,))}
                torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))

                ten = {"<******>": 2 * torch.ones((1, 32))}
                torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))

                pipe.load_textual_inversion([tmpdirname1, tmpdirname2])

                token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
                assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
                assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"

                token = pipe.tokenizer.convert_tokens_to_ids("<******>")
                assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
                assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"

                prompt = "hey <*****> <******>"
783
                out = pipe(prompt, num_inference_steps=1, output_type="np").images
784
785
                assert out.shape == (1, 128, 128, 3)

786
787
788
789
790
791
792
793
794
795
        # single token state dict load
        ten = {"<x>": torch.ones((32,))}
        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<x>")
        assert token == num_tokens + 10, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
        assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>"

        prompt = "hey <x>"
796
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
        assert out.shape == (1, 128, 128, 3)

        # multi embedding state dict load
        ten1 = {"<xxxxx>": torch.ones((32,))}
        ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))}

        pipe.load_textual_inversion([ten1, ten2])

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>")
        assert token == num_tokens + 11, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
        assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>"

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>")
        assert token == num_tokens + 12, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
        assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>"

        prompt = "hey <xxxxx> <xxxxxx>"
816
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        assert out.shape == (1, 128, 128, 3)

        # auto1111 multi-token state dict load
        ten = {
            "string_to_param": {
                "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
            },
            "name": "<xxxx>",
        }

        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>")
        token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1")
        token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2")

        assert token == num_tokens + 13, "Added token must be at spot `num_tokens`"
        assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`"
        assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
        assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2"

        prompt = "hey <xxxx>"
842
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
843
844
        assert out.shape == (1, 128, 128, 3)

845
846
847
848
849
850
851
852
853
        # multiple references to multi embedding
        ten = {"<cat>": torch.ones(3, 32)}
        pipe.load_textual_inversion(ten)

        assert (
            pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2"
        )

        prompt = "hey <cat> <cat>"
854
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
855
856
        assert out.shape == (1, 128, 128, 3)

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    def test_text_inversion_multi_tokens(self):
        pipe1 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe1 = pipe1.to(torch_device)

        token1, token2 = "<*>", "<**>"
        ten1 = torch.ones((32,))
        ten2 = torch.ones((32,)) * 2

        num_tokens = len(pipe1.tokenizer)

        pipe1.load_textual_inversion(ten1, token=token1)
        pipe1.load_textual_inversion(ten2, token=token2)
        emb1 = pipe1.text_encoder.get_input_embeddings().weight

        pipe2 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe2 = pipe2.to(torch_device)
        pipe2.load_textual_inversion([ten1, ten2], token=[token1, token2])
        emb2 = pipe2.text_encoder.get_input_embeddings().weight

        pipe3 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe3 = pipe3.to(torch_device)
        pipe3.load_textual_inversion(torch.stack([ten1, ten2], dim=0), token=[token1, token2])
        emb3 = pipe3.text_encoder.get_input_embeddings().weight

        assert len(pipe1.tokenizer) == len(pipe2.tokenizer) == len(pipe3.tokenizer) == num_tokens + 2
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token1)
            == pipe2.tokenizer.convert_tokens_to_ids(token1)
            == pipe3.tokenizer.convert_tokens_to_ids(token1)
            == num_tokens
        )
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token2)
            == pipe2.tokenizer.convert_tokens_to_ids(token2)
            == pipe3.tokenizer.convert_tokens_to_ids(token2)
            == num_tokens + 1
        )
        assert emb1[num_tokens].sum().item() == emb2[num_tokens].sum().item() == emb3[num_tokens].sum().item()
        assert (
            emb1[num_tokens + 1].sum().item() == emb2[num_tokens + 1].sum().item() == emb3[num_tokens + 1].sum().item()
        )

Patrick von Platen's avatar
Patrick von Platen committed
905
906
907
908
909
910
911
912
913
914
915
916
917
    def test_download_ignore_files(self):
        # Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
            assert len(files) == 14

918
919
920
921
922
923
924
925
    def test_get_pipeline_class_from_flax(self):
        flax_config = {"_class_name": "FlaxStableDiffusionPipeline"}
        config = {"_class_name": "StableDiffusionPipeline"}

        # when loading a PyTorch Pipeline from a FlaxPipeline `model_index.json`, e.g.: https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-lms-pipe/blob/7a9063578b325779f0f1967874a6771caa973cad/model_index.json#L2
        # we need to make sure that we don't load the Flax Pipeline class, but instead the PyTorch pipeline class
        assert _get_pipeline_class(DiffusionPipeline, flax_config) == _get_pipeline_class(DiffusionPipeline, config)

926

Patrick von Platen's avatar
Patrick von Platen committed
927
928
929
930
931
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
932
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
933
934
935
936
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
962
963
964
965
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
966
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
967
968
969
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
970

Patrick von Platen's avatar
Patrick von Platen committed
971
972
973
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

974
975
976
977
978
    def test_remote_components(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-components")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
979
        # Check that only loading custom components "my_unet", "my_scheduler" works
980
981
982
983
984
985
986
987
988
989
990
991
992
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "StableDiffusionXLPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
993
        # Check that only loading custom components "my_unet", "my_scheduler" and explicit custom pipeline works
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", custom_pipeline="my_pipeline", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

    def test_remote_auto_custom_pipe(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-all")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1012
        # Check that only loading custom components "my_unet", "my_scheduler" and auto custom pipeline works
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-all", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

1026
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
1029
1030
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
1031
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1032
1033
1034
1035
1036
1037
1038
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1053
1054
1055
1056
1057
1058
1059
    def test_custom_model_and_pipeline(self):
        pipe = CustomPipeline(
            encoder=CustomEncoder(),
            scheduler=DDIMScheduler(),
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
1060
            pipe.save_pretrained(tmpdirname, safe_serialization=False)
1061
1062
1063
1064

            pipe_new = CustomPipeline.from_pretrained(tmpdirname)
            pipe_new.save_pretrained(tmpdirname)

1065
1066
1067
1068
1069
1070
        conf_1 = dict(pipe.config)
        conf_2 = dict(pipe_new.config)

        del conf_2["_name_or_path"]

        assert conf_1 == conf_2
1071

Patrick von Platen's avatar
Patrick von Platen committed
1072
    @slow
1073
    @require_torch_gpu
1074
    def test_download_from_git(self):
1075
1076
        # Because adaptive_avg_pool2d_backward_cuda
        # does not have a deterministic implementation.
Patrick von Platen's avatar
Patrick von Platen committed
1077
1078
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

1079
        feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
1080
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
1081
1082
1083
1084
1085
1086

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
1087
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
1088
        )
1089
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    def test_save_pipeline_change_config(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"

        # let's make sure that changing the scheduler is correctly reflected
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"

Patrick von Platen's avatar
Patrick von Platen committed
1118

1119
class PipelineFastTests(unittest.TestCase):
1120
1121
1122
1123
1124
1125
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1126
1127
1128
1129
1130
1131
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1132
1133
1134
1135
1136
1137
1138
1139
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

1140
    def dummy_uncond_unet(self, sample_size=32):
1141
1142
1143
1144
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1145
            sample_size=sample_size,
1146
1147
1148
1149
1150
1151
1152
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

1153
    def dummy_cond_unet(self, sample_size=32):
1154
1155
1156
1157
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1158
            sample_size=sample_size,
1159
1160
1161
1162
1163
1164
1165
1166
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

1167
    @property
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

1180
    @property
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

1196
    @property
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

1211
1212
1213
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
1214
            [DDPMScheduler, DDPMPipeline, 32],
1215
            [DDIMScheduler, DDIMPipeline, (32, 64)],
1216
            [DDPMScheduler, DDPMPipeline, (64, 32)],
1217
1218
1219
1220
1221
1222
1223
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

1224
        generator = torch.manual_seed(0)
1225
1226
1227
1228
1229
1230
1231
1232
1233
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
1234
        """Test that components property works correctly"""
1235
        unet = self.dummy_cond_unet()
1236
        scheduler = PNDMScheduler(skip_prk_steps=True)
1237
1238
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
1239
1240
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

1241
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
1242
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
1243
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
1244
1245

        # make sure here that pndm scheduler skips prk
1246
        inpaint = StableDiffusionInpaintPipelineLegacy(
1247
1248
1249
1250
1251
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
1252
            safety_checker=None,
1253
            feature_extractor=self.dummy_extractor,
1254
        ).to(torch_device)
1255
1256
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components, image_encoder=None).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components, image_encoder=None).to(torch_device)
1257
1258

        prompt = "A painting of a squirrel eating a burger"
1259

1260
        generator = torch.manual_seed(0)
1261
        image_inpaint = inpaint(
1262
1263
1264
1265
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1266
            image=init_image,
1267
1268
1269
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
1270
1271
1272
1273
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1274
            image=init_image,
1275
1276
1277
        ).images
        image_text2img = text2img(
            [prompt],
1278
1279
1280
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1281
        ).images
1282

1283
1284
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
1285
        assert image_text2img.shape == (1, 64, 64, 3)
1286

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
    @require_torch_gpu
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload()

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
            sd.to("cuda")

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1323
    def test_set_scheduler(self):
1324
        unet = self.dummy_cond_unet()
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
    def test_set_component_to_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        pipeline = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        generator = torch.Generator(device="cpu").manual_seed(0)

        prompt = "This is a flower"

        out_image = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        pipeline.feature_extractor = None
        generator = torch.Generator(device="cpu").manual_seed(0)
        out_image_2 = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        assert out_image.shape == (1, 64, 64, 3)
        assert np.abs(out_image - out_image_2).max() < 1e-3

1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    def test_optional_components_is_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        items = {
            "feature_extractor": self.dummy_extractor,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": bert,
            "tokenizer": tokenizer,
            "safety_checker": None,
            # we don't add an image encoder
        }

        pipeline = StableDiffusionPipeline(**items)

        assert sorted(pipeline.components.keys()) == sorted(["image_encoder"] + list(items.keys()))
        assert pipeline.image_encoder is None

1418
    def test_set_scheduler_consistency(self):
1419
        unet = self.dummy_cond_unet()
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
1479
1480
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
1481
1482
1483
1484
1485
1486
1487
1488

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
1509
        use_safetensors = False
1510
1511
1512

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
1513
1514
1515
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                cache_dir=tmpdirname,
                use_safetensors=use_safetensors,
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
    def test_name_or_path(self):
        model_path = "hf-internal-testing/tiny-stable-diffusion-torch"
        sd = DiffusionPipeline.from_pretrained(model_path)

        assert sd.name_or_path == model_path

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = DiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.name_or_path == tmpdirname

Sayak Paul's avatar
Sayak Paul committed
1646
    def test_error_no_variant_available(self):
1647
        variant = "fp16"
Sayak Paul's avatar
Sayak Paul committed
1648
1649
        with self.assertRaises(ValueError) as error_context:
            _ = StableDiffusionPipeline.download(
1650
1651
1652
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
            )

Sayak Paul's avatar
Sayak Paul committed
1653
1654
        assert "but no such modeling files are available" in str(error_context.exception)
        assert variant in str(error_context.exception)
1655

1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
    def test_pipe_to(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        device_type = torch.device(torch_device).type

        sd1 = sd.to(device_type)
        sd2 = sd.to(torch.device(device_type))
        sd3 = sd.to(device_type, torch.float32)
        sd4 = sd.to(device=device_type)
        sd5 = sd.to(torch_device=device_type)
        sd6 = sd.to(device_type, dtype=torch.float32)
        sd7 = sd.to(device_type, torch_dtype=torch.float32)

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type
        assert sd4.device.type == device_type
        assert sd5.device.type == device_type
        assert sd6.device.type == device_type
        assert sd7.device.type == device_type

        sd1 = sd.to(torch.float16)
        sd2 = sd.to(None, torch.float16)
        sd3 = sd.to(dtype=torch.float16)
1694
        sd4 = sd.to(dtype=torch.float16)
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
        sd5 = sd.to(None, dtype=torch.float16)
        sd6 = sd.to(None, torch_dtype=torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16
        assert sd4.dtype == torch.float16
        assert sd5.dtype == torch.float16
        assert sd6.dtype == torch.float16

        sd1 = sd.to(device=device_type, dtype=torch.float16)
        sd2 = sd.to(torch_device=device_type, torch_dtype=torch.float16)
        sd3 = sd.to(device_type, torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type

    def test_pipe_same_device_id_offload(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload(gpu_id=5)
        assert sd._offload_gpu_id == 5
        sd.maybe_free_model_hooks()
        assert sd._offload_gpu_id == 5

1739

1740
@slow
1741
@require_torch_gpu
1742
class PipelineSlowTests(unittest.TestCase):
1743
1744
1745
1746
1747
1748
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1749
1750
1751
1752
1753
1754
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1755
1756
1757
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
1758
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1776
1777
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
1778
        logger = logging.get_logger("diffusers.pipelines")
1779
1780
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
1781
                DiffusionPipeline.from_pretrained(
1782
1783
1784
1785
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
1786
                )
1787

1788
        assert (
1789
1790
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
1791
        )
1792

1793
    def test_from_save_pretrained(self):
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
1816
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1817
1818

        generator = torch.Generator(device=torch_device).manual_seed(0)
1819
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1820

1821
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1822

1823
    @is_torch_compile
1824
    @require_torch_2
1825
1826
1827
1828
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1829
    def test_from_save_pretrained_dynamo(self):
1830
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None)
1831
1832
1833
1834

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

1835
        scheduler = DDPMScheduler(num_train_timesteps=10)
1836

1837
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
1838
        ddpm = ddpm.to(torch_device)
1839
        ddpm.set_progress_bar_config(disable=None)
1840

1841
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1842
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1843
        ddpm_from_hub.set_progress_bar_config(disable=None)
1844

1845
        generator = torch.Generator(device=torch_device).manual_seed(0)
1846
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1847

1848
        generator = torch.Generator(device=torch_device).manual_seed(0)
1849
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
1850

1851
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1852
1853
1854
1855

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1856
1857
        scheduler = DDPMScheduler(num_train_timesteps=10)

1858
        # pass unet into DiffusionPipeline
1859
1860
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
1861
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
1862
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1863

1864
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1865
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1866
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1867

1868
        generator = torch.Generator(device=torch_device).manual_seed(0)
1869
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="np").images
1870

1871
        generator = torch.Generator(device=torch_device).manual_seed(0)
1872
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
1873

1874
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1875
1876
1877
1878

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

1879
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
1880
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
1881
        pipe.to(torch_device)
1882
        pipe.set_progress_bar_config(disable=None)
1883

1884
        images = pipe(output_type="np").images
1885
1886
1887
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1888
        images = pipe(output_type="pil", num_inference_steps=4).images
1889
1890
1891
1892
1893
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1894
        images = pipe(num_inference_steps=4).images
1895
1896
1897
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

1898
    @require_flax
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
1959
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="np"
1960
1961
1962
1963
1964
1965
1966
1967
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

1968
            assert np.abs(image - expected_image).max() < 3e-1
1969

1970
1971
1972
1973

@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
1974
1975
1976
1977
1978
1979
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1980
1981
1982
1983
1984
1985
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1986
1987
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
1988
        model_id = "google/ddpm-cifar10-32"
1989

1990
        unet = UNet2DModel.from_pretrained(model_id)
1991
1992
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1993

1994
1995
1996
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
1997

1998
1999
2000
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
2001

2002
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2003
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="np").images
2004

2005
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2006
        ddim_images = ddim(
2007
            batch_size=2,
2008
2009
2010
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
2011
            output_type="np",
2012
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
2013
        ).images
2014

2015
2016
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1