"tests/pytorch/sparse/test_sparse_matrix.py" did not exist on "025e43210f724ea3a5f308463166e61b4cd97399"
unet_ldm.py 22.8 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
patil-suraj's avatar
patil-suraj committed
3
4
5
6
7

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
8

patil-suraj's avatar
patil-suraj committed
9
10
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
11
from .attention import AttentionBlock
12
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
up  
Patrick von Platen committed
13
14
15
16
from .resnet import Downsample, ResnetBlock, TimestepBlock, Upsample


# from .resnet import ResBlock
patil-suraj's avatar
patil-suraj committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18

patil-suraj's avatar
patil-suraj committed
19
20
21
22
23
def exists(val):
    return val is not None


def uniq(arr):
Patrick von Platen's avatar
Patrick von Platen committed
24
    return {el: True for el in arr}.keys()
patil-suraj's avatar
patil-suraj committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
56
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
57
58
59
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
139
    :param channels: number of input channels. :return: an nn.Module for normalization.
patil-suraj's avatar
patil-suraj committed
140
141
142
143
144
145
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
146
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
patil-suraj's avatar
patil-suraj committed
147
148
149
150
    """

    def forward(self, x, emb, context=None):
        for layer in self:
Patrick von Platen's avatar
up  
Patrick von Platen committed
151
            if isinstance(layer, TimestepBlock) or isinstance(layer, ResnetBlock):
patil-suraj's avatar
patil-suraj committed
152
153
154
155
156
157
158
159
160
161
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


def count_flops_attn(model, _x, y):
    """
Patrick von Platen's avatar
Patrick von Platen committed
162
    A counter for the `thop` package to count the operations in an attention operation. Meant to be used like:
patil-suraj's avatar
patil-suraj committed
163
        macs, params = thop.profile(
Patrick von Platen's avatar
Patrick von Platen committed
164
            model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops},
patil-suraj's avatar
patil-suraj committed
165
166
167
168
169
170
171
        )
    """
    b, c, *spatial = y[0].shape
    num_spatial = int(np.prod(spatial))
    # We perform two matmuls with the same number of ops.
    # The first computes the weight matrix, the second computes
    # the combination of the value vectors.
Patrick von Platen's avatar
Patrick von Platen committed
172
    matmul_ops = 2 * b * (num_spatial**2) * c
patil-suraj's avatar
patil-suraj committed
173
174
175
    model.total_ops += torch.DoubleTensor([matmul_ops])


patil-suraj's avatar
patil-suraj committed
176
class UNetLDMModel(ModelMixin, ConfigMixin):
patil-suraj's avatar
patil-suraj committed
177
    """
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
181
182
183
184
185
    The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param
    model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param
    num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample
    rates at which
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
patil-suraj's avatar
patil-suraj committed
186
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
187
188
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
patil-suraj's avatar
patil-suraj committed
189
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
190
191
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
patil-suraj's avatar
patil-suraj committed
192
193
194
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
195
196
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially
patil-suraj's avatar
patil-suraj committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
224
        use_spatial_transformer=False,  # custom transformer support
        transformer_depth=1,  # custom transformer support
        context_dim=None,  # custom transformer support
        n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
patil-suraj's avatar
patil-suraj committed
225
226
227
        legacy=True,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
228

patil-suraj's avatar
patil-suraj committed
229
        # register all __init__ params with self.register
230
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            image_size=image_size,
            in_channels=in_channels,
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            num_classes=num_classes,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            use_spatial_transformer=use_spatial_transformer,
            transformer_depth=transformer_depth,
            context_dim=context_dim,
            n_embed=n_embed,
            legacy=legacy,
        )

        if use_spatial_transformer:
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
            assert (
                context_dim is not None
            ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
261
262

        if context_dim is not None:
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
            assert (
                use_spatial_transformer
            ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
266
267
268
269
270

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
Patrick von Platen's avatar
Patrick von Platen committed
271
            assert num_head_channels != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
272
273

        if num_head_channels == -1:
Patrick von Platen's avatar
Patrick von Platen committed
274
            assert num_heads != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
275
276
277
278
279
280
281
282
283
284
285
286

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
patil-suraj's avatar
patil-suraj committed
287
        self.dtype_ = torch.float16 if use_fp16 else torch.float32
patil-suraj's avatar
patil-suraj committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            self.label_emb = nn.Embedding(num_classes, time_embed_dim)

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
304
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
305
306
307
308
309
310
311
312
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
Patrick von Platen's avatar
up  
Patrick von Platen committed
313
314
315
316
317
318
319
320
                    ResnetBlock(
                        in_channels=ch,
                        out_channels=mult * model_channels,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
321
322
323
324
325
326
327
328
329
330
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
331
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
332
333
334
335
336
337
338
339
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
340
341
342
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
343
344
345
346
347
348
349
350
351
352
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
353
                        Downsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op")
patil-suraj's avatar
patil-suraj committed
354
355
356
357
358
359
360
361
362
363
364
365
366
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
367
            # num_heads = 1
patil-suraj's avatar
patil-suraj committed
368
369
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
Patrick von Platen's avatar
up  
Patrick von Platen committed
370
371
372
373
374
375
376
377
            ResnetBlock(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
378
379
380
381
382
383
384
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=dim_head,
                use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
385
386
387
            )
            if not use_spatial_transformer
            else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
Patrick von Platen's avatar
up  
Patrick von Platen committed
388
389
390
391
392
393
394
395
            ResnetBlock(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
396
397
398
399
400
401
402
403
404
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
Patrick von Platen's avatar
up  
Patrick von Platen committed
405
406
                    ResnetBlock(
                        in_channels=ch + ich,
patil-suraj's avatar
patil-suraj committed
407
                        out_channels=model_channels * mult,
Patrick von Platen's avatar
up  
Patrick von Platen committed
408
409
410
411
412
413
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        overwrite_for_ldm=True,
                    ),
patil-suraj's avatar
patil-suraj committed
414
415
416
417
418
419
420
421
422
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
423
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
424
425
426
427
428
429
430
431
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
432
433
434
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
435
436
437
438
439
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
440
                    layers.append(Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch))
patil-suraj's avatar
patil-suraj committed
441
442
443
444
445
446
447
448
449
450
451
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
Patrick von Platen's avatar
Patrick von Platen committed
452
453
454
455
                normalization(ch),
                conv_nd(dims, model_channels, n_embed, 1),
                # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
            )
patil-suraj's avatar
patil-suraj committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

Patrick von Platen's avatar
Patrick von Platen committed
473
    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
patil-suraj's avatar
patil-suraj committed
474
        """
Patrick von Platen's avatar
Patrick von Platen committed
475
476
477
        Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch
        of timesteps. :param context: conditioning plugged in via crossattn :param y: an [N] Tensor of labels, if
        class-conditional. :return: an [N x C x ...] Tensor of outputs.
patil-suraj's avatar
patil-suraj committed
478
479
480
481
482
        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
patil-suraj's avatar
patil-suraj committed
483
484
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
485
        t_emb = get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
patil-suraj's avatar
patil-suraj committed
486
487
488
489
490
491
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape == (x.shape[0],)
            emb = emb + self.label_emb(y)

patil-suraj's avatar
patil-suraj committed
492
        h = x.type(self.dtype_)
patil-suraj's avatar
patil-suraj committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)


507
class SpatialTransformer(nn.Module):
patil-suraj's avatar
patil-suraj committed
508
    """
509
510
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
patil-suraj's avatar
patil-suraj committed
511
512
    """

513
    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
patil-suraj's avatar
patil-suraj committed
514
515
        super().__init__()
        self.in_channels = in_channels
516
517
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)
patil-suraj's avatar
patil-suraj committed
518

519
        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
patil-suraj's avatar
patil-suraj committed
520

521
522
523
524
525
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
patil-suraj's avatar
patil-suraj committed
526
527
        )

528
        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
patil-suraj's avatar
patil-suraj committed
529

530
531
532
533
534
535
536
537
538
539
540
541
    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
        x = self.proj_out(x)
        return x + x_in
patil-suraj's avatar
patil-suraj committed
542
543


544
545
546
547
548
549
550
551
552
553
554
555
556
557
class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint
patil-suraj's avatar
patil-suraj committed
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, x, context=None, mask=None):
        batch_size, sequence_length, dim = x.shape

        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)

        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

        if exists(mask):
            mask = mask.reshape(batch_size, -1)
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = mask[:, None, :].repeat(h, 1, 1)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = torch.einsum("b i j, b j d -> b i d", attn, v)
        out = self.reshape_batch_dim_to_heads(out)
        return self.to_out(out)