unet_ldm.py 35.9 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
patil-suraj's avatar
patil-suraj committed
3
4
5
6
7

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
Patrick von Platen's avatar
Patrick von Platen committed
8

patil-suraj's avatar
patil-suraj committed
9
10
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
11
from .attention import AttentionBlock
12
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
up  
Patrick von Platen committed
13
14
15
from .resnet import Downsample, TimestepBlock, Upsample
from .resnet import ResnetBlock
#from .resnet import ResBlock
patil-suraj's avatar
patil-suraj committed
16

Patrick von Platen's avatar
Patrick von Platen committed
17

patil-suraj's avatar
patil-suraj committed
18
19
20
21
22
def exists(val):
    return val is not None


def uniq(arr):
Patrick von Platen's avatar
Patrick von Platen committed
23
    return {el: True for el in arr}.keys()
patil-suraj's avatar
patil-suraj committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
55
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
56
57
58
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


patil-suraj's avatar
cleanup  
patil-suraj committed
80
# class LinearAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#    def __init__(self, dim, heads=4, dim_head=32):
#        super().__init__()
#        self.heads = heads
#        hidden_dim = dim_head * heads
#        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
#        self.to_out = nn.Conv2d(hidden_dim, dim, 1)
#
#    def forward(self, x):
#        b, c, h, w = x.shape
#        qkv = self.to_qkv(x)
#        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
#        import ipdb; ipdb.set_trace()
#        k = k.softmax(dim=-1)
#        context = torch.einsum("bhdn,bhen->bhde", k, v)
#        out = torch.einsum("bhde,bhdn->bhen", context, q)
#        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
#        return self.to_out(out)
#

patil-suraj's avatar
cleanup  
patil-suraj committed
100
# class SpatialSelfAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#    def __init__(self, in_channels):
#        super().__init__()
#        self.in_channels = in_channels
#
#        self.norm = Normalize(in_channels)
#        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#
#    def forward(self, x):
#        h_ = x
#        h_ = self.norm(h_)
#        q = self.q(h_)
#        k = self.k(h_)
#        v = self.v(h_)
#
patil-suraj's avatar
cleanup  
patil-suraj committed
118
# compute attention
Patrick von Platen's avatar
Patrick von Platen committed
119
120
121
122
123
124
125
126
#        b, c, h, w = q.shape
#        q = rearrange(q, "b c h w -> b (h w) c")
#        k = rearrange(k, "b c h w -> b c (h w)")
#        w_ = torch.einsum("bij,bjk->bik", q, k)
#
#        w_ = w_ * (int(c) ** (-0.5))
#        w_ = torch.nn.functional.softmax(w_, dim=2)
#
patil-suraj's avatar
cleanup  
patil-suraj committed
127
# attend to values
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
132
133
134
135
#        v = rearrange(v, "b c h w -> b c (h w)")
#        w_ = rearrange(w_, "b i j -> b j i")
#        h_ = torch.einsum("bij,bjk->bik", v, w_)
#        h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
#        h_ = self.proj_out(h_)
#
#        return x + h_
#
patil-suraj's avatar
patil-suraj committed
136

patil-suraj's avatar
cleanup  
patil-suraj committed
137

patil-suraj's avatar
patil-suraj committed
138
class CrossAttention(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
139
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
patil-suraj's avatar
patil-suraj committed
140
141
142
143
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

Patrick von Platen's avatar
Patrick von Platen committed
144
        self.scale = dim_head**-0.5
patil-suraj's avatar
patil-suraj committed
145
146
147
148
149
150
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

Patrick von Platen's avatar
Patrick von Platen committed
151
        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
patil-suraj's avatar
patil-suraj committed
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

patil-suraj's avatar
patil-suraj committed
167
    def forward(self, x, context=None, mask=None):
168
169
        batch_size, sequence_length, dim = x.shape

patil-suraj's avatar
patil-suraj committed
170
171
172
173
174
175
176
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

177
178
179
        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)
patil-suraj's avatar
patil-suraj committed
180

Patrick von Platen's avatar
Patrick von Platen committed
181
        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
patil-suraj's avatar
patil-suraj committed
182
183

        if exists(mask):
184
            mask = mask.reshape(batch_size, -1)
patil-suraj's avatar
patil-suraj committed
185
            max_neg_value = -torch.finfo(sim.dtype).max
186
            mask = mask[:, None, :].repeat(h, 1, 1)
patil-suraj's avatar
patil-suraj committed
187
188
189
190
191
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

Patrick von Platen's avatar
Patrick von Platen committed
192
        out = torch.einsum("b i j, b j d -> b i d", attn, v)
193
        out = self.reshape_batch_dim_to_heads(out)
patil-suraj's avatar
patil-suraj committed
194
195
196
197
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
198
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
patil-suraj's avatar
patil-suraj committed
199
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
200
201
202
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
patil-suraj's avatar
patil-suraj committed
203
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
Patrick von Platen's avatar
Patrick von Platen committed
204
205
206
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
patil-suraj's avatar
patil-suraj committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
Patrick von Platen's avatar
Patrick von Platen committed
221
222
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
patil-suraj's avatar
patil-suraj committed
223
    """
Patrick von Platen's avatar
Patrick von Platen committed
224
225

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
patil-suraj's avatar
patil-suraj committed
226
227
228
229
230
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)

Patrick von Platen's avatar
Patrick von Platen committed
231
        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
patil-suraj's avatar
patil-suraj committed
232
233

        self.transformer_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
237
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
patil-suraj's avatar
patil-suraj committed
238
239
        )

Patrick von Platen's avatar
Patrick von Platen committed
240
        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
patil-suraj's avatar
patil-suraj committed
241
242
243
244
245
246
247

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
248
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
patil-suraj's avatar
patil-suraj committed
249
250
        for block in self.transformer_blocks:
            x = block(x, context=context)
251
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
patil-suraj's avatar
patil-suraj committed
252
253
254
        x = self.proj_out(x)
        return x + x_in

Patrick von Platen's avatar
Patrick von Platen committed
255

patil-suraj's avatar
patil-suraj committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
327
    :param channels: number of input channels. :return: an nn.Module for normalization.
patil-suraj's avatar
patil-suraj committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class AttentionPool2d(nn.Module):
    """
    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
    """

    def __init__(
        self,
        spacial_dim: int,
        embed_dim: int,
        num_heads_channels: int,
        output_dim: int = None,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
345
        self.positional_embedding = nn.Parameter(torch.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
patil-suraj's avatar
patil-suraj committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
        self.num_heads = embed_dim // num_heads_channels
        self.attention = QKVAttention(self.num_heads)

    def forward(self, x):
        b, c, *_spatial = x.shape
        x = x.reshape(b, c, -1)  # NC(HW)
        x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
        x = self.qkv_proj(x)
        x = self.attention(x)
        x = self.c_proj(x)
        return x[:, :, 0]


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
364
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
patil-suraj's avatar
patil-suraj committed
365
366
367
368
    """

    def forward(self, x, emb, context=None):
        for layer in self:
Patrick von Platen's avatar
up  
Patrick von Platen committed
369
            if isinstance(layer, TimestepBlock) or isinstance(layer, ResnetBlock):
patil-suraj's avatar
patil-suraj committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
Patrick von Platen's avatar
Patrick von Platen committed
389
390
        Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x
        T] tensor after attention.
patil-suraj's avatar
patil-suraj committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


def count_flops_attn(model, _x, y):
    """
Patrick von Platen's avatar
Patrick von Platen committed
413
    A counter for the `thop` package to count the operations in an attention operation. Meant to be used like:
patil-suraj's avatar
patil-suraj committed
414
        macs, params = thop.profile(
Patrick von Platen's avatar
Patrick von Platen committed
415
            model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops},
patil-suraj's avatar
patil-suraj committed
416
417
418
419
420
421
422
        )
    """
    b, c, *spatial = y[0].shape
    num_spatial = int(np.prod(spatial))
    # We perform two matmuls with the same number of ops.
    # The first computes the weight matrix, the second computes
    # the combination of the value vectors.
Patrick von Platen's avatar
Patrick von Platen committed
423
    matmul_ops = 2 * b * (num_spatial**2) * c
patil-suraj's avatar
patil-suraj committed
424
425
426
    model.total_ops += torch.DoubleTensor([matmul_ops])


patil-suraj's avatar
patil-suraj committed
427
class UNetLDMModel(ModelMixin, ConfigMixin):
patil-suraj's avatar
patil-suraj committed
428
    """
Patrick von Platen's avatar
Patrick von Platen committed
429
430
431
432
433
434
435
436
    The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param
    model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param
    num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample
    rates at which
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
patil-suraj's avatar
patil-suraj committed
437
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
438
439
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
patil-suraj's avatar
patil-suraj committed
440
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
441
442
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
patil-suraj's avatar
patil-suraj committed
443
444
445
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
446
447
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially
patil-suraj's avatar
patil-suraj committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
Patrick von Platen's avatar
Patrick von Platen committed
472
473
474
475
        use_spatial_transformer=False,  # custom transformer support
        transformer_depth=1,  # custom transformer support
        context_dim=None,  # custom transformer support
        n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
patil-suraj's avatar
patil-suraj committed
476
477
478
        legacy=True,
    ):
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
479

patil-suraj's avatar
patil-suraj committed
480
        # register all __init__ params with self.register
481
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            image_size=image_size,
            in_channels=in_channels,
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            num_classes=num_classes,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            use_spatial_transformer=use_spatial_transformer,
            transformer_depth=transformer_depth,
            context_dim=context_dim,
            n_embed=n_embed,
            legacy=legacy,
        )

        if use_spatial_transformer:
Patrick von Platen's avatar
Patrick von Platen committed
509
510
511
            assert (
                context_dim is not None
            ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
512
513

        if context_dim is not None:
Patrick von Platen's avatar
Patrick von Platen committed
514
515
516
            assert (
                use_spatial_transformer
            ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
patil-suraj's avatar
patil-suraj committed
517
518
519
520
521

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
Patrick von Platen's avatar
Patrick von Platen committed
522
            assert num_head_channels != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
523
524

        if num_head_channels == -1:
Patrick von Platen's avatar
Patrick von Platen committed
525
            assert num_heads != -1, "Either num_heads or num_head_channels has to be set"
patil-suraj's avatar
patil-suraj committed
526
527
528
529
530
531
532
533
534
535
536
537

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
patil-suraj's avatar
patil-suraj committed
538
        self.dtype_ = torch.float16 if use_fp16 else torch.float32
patil-suraj's avatar
patil-suraj committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            self.label_emb = nn.Embedding(num_classes, time_embed_dim)

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
555
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
556
557
558
559
560
561
562
563
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
Patrick von Platen's avatar
up  
Patrick von Platen committed
564
565
566
567
568
569
570
571
                     ResnetBlock(
                         in_channels=ch,
                         out_channels=mult * model_channels,
                         dropout=dropout,
                         temb_channels=time_embed_dim,
                         eps=1e-5,
                         non_linearity="silu",
                         overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
572
573
574
575
576
577
578
579
580
581
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
582
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
583
584
585
586
587
588
589
590
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
591
592
593
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
594
595
596
597
598
599
600
601
602
603
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
Patrick von Platen's avatar
up  
Patrick von Platen committed
604
605
606
607
608
609
610
611
612
613
614
#                        ResBlock(
#                            ch,
#                            time_embed_dim,
#                            dropout,
#                            out_channels=out_ch,
#                            dims=dims,
#                            use_checkpoint=use_checkpoint,
#                            use_scale_shift_norm=use_scale_shift_norm,
#                            down=True,
#                        )
                        None
patil-suraj's avatar
patil-suraj committed
615
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
616
617
618
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
patil-suraj's avatar
patil-suraj committed
619
620
621
622
623
624
625
626
627
628
629
630
631
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
632
            # num_heads = 1
patil-suraj's avatar
patil-suraj committed
633
634
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
Patrick von Platen's avatar
up  
Patrick von Platen committed
635
636
637
638
639
640
641
642
            ResnetBlock(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
643
644
645
646
647
648
649
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=dim_head,
                use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
650
651
652
            )
            if not use_spatial_transformer
            else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim),
Patrick von Platen's avatar
up  
Patrick von Platen committed
653
654
655
656
657
658
659
660
            ResnetBlock(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
661
662
663
664
665
666
667
668
669
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
Patrick von Platen's avatar
up  
Patrick von Platen committed
670
671
                    ResnetBlock(
                        in_channels=ch + ich,
patil-suraj's avatar
patil-suraj committed
672
                        out_channels=model_channels * mult,
Patrick von Platen's avatar
up  
Patrick von Platen committed
673
674
675
676
677
678
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        overwrite_for_ldm=True,
                    ),
patil-suraj's avatar
patil-suraj committed
679
680
681
682
683
684
685
686
687
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
Patrick von Platen's avatar
Patrick von Platen committed
688
                        # num_heads = 1
patil-suraj's avatar
patil-suraj committed
689
690
691
692
693
694
695
696
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
Patrick von Platen's avatar
Patrick von Platen committed
697
698
699
                        )
                        if not use_spatial_transformer
                        else SpatialTransformer(
patil-suraj's avatar
patil-suraj committed
700
701
702
703
704
705
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
Patrick von Platen's avatar
up  
Patrick von Platen committed
706
707
708
709
710
711
712
713
714
715
716
#                        ResBlock(
#                            ch,
#                            time_embed_dim,
#                            dropout,
#                            out_channels=out_ch,
#                            dims=dims,
#                            use_checkpoint=use_checkpoint,
#                            use_scale_shift_norm=use_scale_shift_norm,
#                            up=True,
#                        )
                        None
patil-suraj's avatar
patil-suraj committed
717
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
718
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
patil-suraj's avatar
patil-suraj committed
719
720
721
722
723
724
725
726
727
728
729
730
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
Patrick von Platen's avatar
Patrick von Platen committed
731
732
733
734
                normalization(ch),
                conv_nd(dims, model_channels, n_embed, 1),
                # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
            )
patil-suraj's avatar
patil-suraj committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

Patrick von Platen's avatar
Patrick von Platen committed
752
    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
patil-suraj's avatar
patil-suraj committed
753
        """
Patrick von Platen's avatar
Patrick von Platen committed
754
755
756
        Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch
        of timesteps. :param context: conditioning plugged in via crossattn :param y: an [N] Tensor of labels, if
        class-conditional. :return: an [N x C x ...] Tensor of outputs.
patil-suraj's avatar
patil-suraj committed
757
758
759
760
761
        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
patil-suraj's avatar
patil-suraj committed
762
763
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
764
        t_emb = get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
patil-suraj's avatar
patil-suraj committed
765
766
767
768
769
770
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape == (x.shape[0],)
            emb = emb + self.label_emb(y)

patil-suraj's avatar
patil-suraj committed
771
        h = x.type(self.dtype_)
patil-suraj's avatar
patil-suraj committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)


class EncoderUNetModel(nn.Module):
    """
Patrick von Platen's avatar
Patrick von Platen committed
788
    The half UNet model with attention and timestep embedding. For usage, see UNet.
patil-suraj's avatar
patil-suraj committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        pool="adaptive",
        *args,
Patrick von Platen's avatar
Patrick von Platen committed
813
        **kwargs,
patil-suraj's avatar
patil-suraj committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
        self.dtype = torch.float16 if use_fp16 else torch.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        self.input_blocks = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
842
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
patil-suraj's avatar
patil-suraj committed
843
844
845
846
847
848
849
850
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
Patrick von Platen's avatar
up  
Patrick von Platen committed
851
852
853
854
855
856
857
858
859
                    ResnetBlock(
                        in_channels=ch,
                        out_channels=model_channels * mult,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
                        overwrite_for_ldm=True,
                    ),
patil-suraj's avatar
patil-suraj committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                            use_new_attention_order=use_new_attention_order,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
Patrick von Platen's avatar
up  
Patrick von Platen committed
879
880
881
882
883
884
885
886
887
888
889
#                        ResBlock(
#                            ch,
#                            time_embed_dim,
#                            dropout,
#                            out_channels=out_ch,
#                            dims=dims,
#                            use_checkpoint=use_checkpoint,
#                            use_scale_shift_norm=use_scale_shift_norm,
#                            down=True,
#                        )
                        None
patil-suraj's avatar
patil-suraj committed
890
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
891
892
893
                        else Downsample(
                            ch, use_conv=conv_resample, dims=dims, out_channels=out_ch, padding=1, name="op"
                        )
patil-suraj's avatar
patil-suraj committed
894
895
896
897
898
899
900
901
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
Patrick von Platen's avatar
up  
Patrick von Platen committed
902
903
904
905
906
907
908
909
            ResnetBlock(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
910
911
912
913
914
915
916
917
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
                use_new_attention_order=use_new_attention_order,
            ),
Patrick von Platen's avatar
up  
Patrick von Platen committed
918
919
920
921
922
923
924
925
            ResnetBlock(
                in_channels=ch,
                out_channels=None,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
                overwrite_for_ldm=True,
patil-suraj's avatar
patil-suraj committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
            ),
        )
        self._feature_size += ch
        self.pool = pool
        if pool == "adaptive":
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
                nn.AdaptiveAvgPool2d((1, 1)),
                zero_module(conv_nd(dims, ch, out_channels, 1)),
                nn.Flatten(),
            )
        elif pool == "attention":
            assert num_head_channels != -1
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
Patrick von Platen's avatar
Patrick von Platen committed
943
                AttentionPool2d((image_size // ds), ch, num_head_channels, out_channels),
patil-suraj's avatar
patil-suraj committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
            )
        elif pool == "spatial":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                nn.ReLU(),
                nn.Linear(2048, self.out_channels),
            )
        elif pool == "spatial_v2":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                normalization(2048),
                nn.SiLU(),
                nn.Linear(2048, self.out_channels),
            )
        else:
            raise NotImplementedError(f"Unexpected {pool} pooling")

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)

    def forward(self, x, timesteps):
        """
Patrick von Platen's avatar
Patrick von Platen committed
977
978
        Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch
        of timesteps. :return: an [N x K] Tensor of outputs.
patil-suraj's avatar
patil-suraj committed
979
        """
980
981
982
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
patil-suraj's avatar
patil-suraj committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

        results = []
        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            if self.pool.startswith("spatial"):
                results.append(h.type(x.dtype).mean(dim=(2, 3)))
        h = self.middle_block(h, emb)
        if self.pool.startswith("spatial"):
            results.append(h.type(x.dtype).mean(dim=(2, 3)))
            h = torch.cat(results, axis=-1)
            return self.out(h)
        else:
            h = h.type(x.dtype)
            return self.out(h)