unet.py 6.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
from torch import nn
20

Patrick von Platen's avatar
Patrick von Platen committed
21
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
22
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
23
from .attention import AttentionBlock
24
from .embeddings import get_timestep_embedding
Patrick von Platen's avatar
Patrick von Platen committed
25
from .resnet import Downsample, ResnetBlock, Upsample
26
27


Patrick von Platen's avatar
improve  
Patrick von Platen committed
28
29
30
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
31
32


Patrick von Platen's avatar
improve  
Patrick von Platen committed
33
34
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
35
36


Patrick von Platen's avatar
Patrick von Platen committed
37
class UNetModel(ModelMixin, ConfigMixin):
38
39
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
40
41
42
43
44
45
46
47
48
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
49
50
    ):
        super().__init__()
51
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
77
        )
78

Patrick von Platen's avatar
improve  
Patrick von Platen committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
95
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
96
97
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
98
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
99
100
101
102
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
patil-suraj's avatar
patil-suraj committed
103
                down.downsample = Downsample(block_in, use_conv=resamp_with_conv, padding=0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
104
105
106
107
108
109
110
111
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
Patrick von Platen's avatar
Patrick von Platen committed
112
        self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
113
114
115
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
116

Patrick von Platen's avatar
improve  
Patrick von Platen committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
                    ResnetBlock(
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
137
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
138
139
140
141
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
patil-suraj's avatar
patil-suraj committed
142
                up.upsample = Upsample(block_in, use_conv=resamp_with_conv)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
143
144
145
146
147
148
149
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

patil-suraj's avatar
patil-suraj committed
150
    def forward(self, x, timesteps):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
151
152
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
153
154
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
155
156

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
157
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h