utils.py 94.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sayak Paul's avatar
Sayak Paul committed
15
import inspect
16
17
18
import os
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
19
from itertools import product
20
21

import numpy as np
22
import pytest
23
24
25
26
27
28
29
30
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    LCMScheduler,
    UNet2DConditionModel,
)
31
from diffusers.utils import logging
32
33
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
34
    CaptureLogger,
35
    floats_tensor,
36
    is_torch_version,
37
38
    require_peft_backend,
    require_peft_version_greater,
39
    require_transformers_version_greater,
40
    skip_mps,
41
42
43
44
45
    torch_device,
)


if is_peft_available():
46
    from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


73
74
75
76
77
78
def initialize_dummy_state_dict(state_dict):
    if not all(v.device.type == "meta" for _, v in state_dict.items()):
        raise ValueError("`state_dict` has non-meta values.")
    return {k: torch.randn(v.shape, device=torch_device, dtype=v.dtype) for k, v in state_dict.items()}


79
80
81
POSSIBLE_ATTENTION_KWARGS_NAMES = ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]


82
83
84
@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
Aryan's avatar
Aryan committed
85

86
87
    scheduler_cls = None
    scheduler_kwargs = None
Aryan's avatar
Aryan committed
88
    scheduler_classes = [DDIMScheduler, LCMScheduler]
Sayak Paul's avatar
Sayak Paul committed
89

90
    has_two_text_encoders = False
91
    has_three_text_encoders = False
Sayak Paul's avatar
Sayak Paul committed
92
93
94
95
96
97
98
    text_encoder_cls, text_encoder_id = None, None
    text_encoder_2_cls, text_encoder_2_id = None, None
    text_encoder_3_cls, text_encoder_3_id = None, None
    tokenizer_cls, tokenizer_id = None, None
    tokenizer_2_cls, tokenizer_2_id = None, None
    tokenizer_3_cls, tokenizer_3_id = None, None

99
    unet_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
100
    transformer_cls = None
101
    transformer_kwargs = None
Aryan's avatar
Aryan committed
102
    vae_cls = AutoencoderKL
103
104
    vae_kwargs = None

Aryan's avatar
Aryan committed
105
106
    text_encoder_target_modules = ["q_proj", "k_proj", "v_proj", "out_proj"]

107
    def get_dummy_components(self, scheduler_cls=None, use_dora=False):
108
109
110
111
112
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

113
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
114
115
116
        rank = 4

        torch.manual_seed(0)
117
118
119
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
Sayak Paul's avatar
Sayak Paul committed
120
            transformer = self.transformer_cls(**self.transformer_kwargs)
121
122
123
124

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
Aryan's avatar
Aryan committed
125
        vae = self.vae_cls(**self.vae_kwargs)
126

Sayak Paul's avatar
Sayak Paul committed
127
128
        text_encoder = self.text_encoder_cls.from_pretrained(self.text_encoder_id)
        tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id)
129

Sayak Paul's avatar
Sayak Paul committed
130
131
132
        if self.text_encoder_2_cls is not None:
            text_encoder_2 = self.text_encoder_2_cls.from_pretrained(self.text_encoder_2_id)
            tokenizer_2 = self.tokenizer_2_cls.from_pretrained(self.tokenizer_2_id)
133

Sayak Paul's avatar
Sayak Paul committed
134
135
136
        if self.text_encoder_3_cls is not None:
            text_encoder_3 = self.text_encoder_3_cls.from_pretrained(self.text_encoder_3_id)
            tokenizer_3 = self.tokenizer_3_cls.from_pretrained(self.tokenizer_3_id)
137

138
139
140
        text_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
Aryan's avatar
Aryan committed
141
            target_modules=self.text_encoder_target_modules,
142
            init_lora_weights=False,
143
            use_dora=use_dora,
144
145
        )

146
        denoiser_lora_config = LoraConfig(
147
148
149
150
151
            r=rank,
            lora_alpha=rank,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
152
153
        )

Sayak Paul's avatar
Sayak Paul committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        pipeline_components = {
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        # Denoiser
        if self.unet_kwargs is not None:
            pipeline_components.update({"unet": unet})
        elif self.transformer_kwargs is not None:
            pipeline_components.update({"transformer": transformer})

        # Remaining text encoders.
        if self.text_encoder_2_cls is not None:
            pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
        if self.text_encoder_3_cls is not None:
            pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})

        # Remaining stuff
        init_params = inspect.signature(self.pipeline_class.__init__).parameters
        if "safety_checker" in init_params:
            pipeline_components.update({"safety_checker": None})
        if "feature_extractor" in init_params:
            pipeline_components.update({"feature_extractor": None})
        if "image_encoder" in init_params:
            pipeline_components.update({"image_encoder": None})
180

181
        return pipeline_components, text_lora_config, denoiser_lora_config
182

Sayak Paul's avatar
Sayak Paul committed
183
184
185
186
    @property
    def output_shape(self):
        raise NotImplementedError

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

208
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
209
210
211
212
213
214
215
216
217
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

218
219
220
221
222
223
224
225
226
227
228
    def _get_lora_state_dicts(self, modules_to_save):
        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(module)
        return state_dicts

    def _get_modules_to_save(self, pipe, has_denoiser=False):
        modules_to_save = {}
        lora_loadable_modules = self.pipeline_class._lora_loadable_modules

229
230
231
232
233
        if (
            "text_encoder" in lora_loadable_modules
            and hasattr(pipe, "text_encoder")
            and getattr(pipe.text_encoder, "peft_config", None) is not None
        ):
234
235
            modules_to_save["text_encoder"] = pipe.text_encoder

236
237
238
239
240
        if (
            "text_encoder_2" in lora_loadable_modules
            and hasattr(pipe, "text_encoder_2")
            and getattr(pipe.text_encoder_2, "peft_config", None) is not None
        ):
241
242
243
244
245
246
247
248
249
250
251
            modules_to_save["text_encoder_2"] = pipe.text_encoder_2

        if has_denoiser:
            if "unet" in lora_loadable_modules and hasattr(pipe, "unet"):
                modules_to_save["unet"] = pipe.unet

            if "transformer" in lora_loadable_modules and hasattr(pipe, "transformer"):
                modules_to_save["transformer"] = pipe.transformer

        return modules_to_save

252
253
254
255
    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
256
        for scheduler_cls in self.scheduler_classes:
257
258
259
260
261
262
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
263
            output_no_lora = pipe(**inputs)[0]
Sayak Paul's avatar
Sayak Paul committed
264
            self.assertTrue(output_no_lora.shape == self.output_shape)
265
266
267
268
269
270

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
271
        for scheduler_cls in self.scheduler_classes:
272
273
274
275
276
277
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
278
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
279
            self.assertTrue(output_no_lora.shape == self.output_shape)
280
281
282
283

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

284
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
285
286
287
288
289
290
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
291

Aryan's avatar
Aryan committed
292
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
293
294
295
296
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    @require_peft_version_greater("0.13.1")
    def test_low_cpu_mem_usage_with_injection(self):
        """Tests if we can inject LoRA state dict with low_cpu_mem_usage."""
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                inject_adapter_in_model(text_lora_config, pipe.text_encoder, low_cpu_mem_usage=True)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder."
                )
                self.assertTrue(
                    "meta" in {p.device.type for p in pipe.text_encoder.parameters()},
                    "The LoRA params should be on 'meta' device.",
                )

                te_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder))
                set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
                self.assertTrue(
                    "meta" not in {p.device.type for p in pipe.text_encoder.parameters()},
                    "No param should be on 'meta' device.",
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            inject_adapter_in_model(denoiser_lora_config, denoiser, low_cpu_mem_usage=True)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
            self.assertTrue(
                "meta" in {p.device.type for p in denoiser.parameters()}, "The LoRA params should be on 'meta' device."
            )

            denoiser_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(denoiser))
            set_peft_model_state_dict(denoiser, denoiser_state_dict, low_cpu_mem_usage=True)
            self.assertTrue(
                "meta" not in {p.device.type for p in denoiser.parameters()}, "No param should be on 'meta' device."
            )

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    inject_adapter_in_model(text_lora_config, pipe.text_encoder_2, low_cpu_mem_usage=True)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    self.assertTrue(
                        "meta" in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "The LoRA params should be on 'meta' device.",
                    )

                    te2_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder_2))
                    set_peft_model_state_dict(pipe.text_encoder_2, te2_state_dict, low_cpu_mem_usage=True)
                    self.assertTrue(
                        "meta" not in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "No param should be on 'meta' device.",
                    )

            _, _, inputs = self.get_dummy_inputs()
            output_lora = pipe(**inputs)[0]
            self.assertTrue(output_lora.shape == self.output_shape)

    @require_peft_version_greater("0.13.1")
359
    @require_transformers_version_greater("4.45.2")
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    def test_low_cpu_mem_usage_with_loading(self):
        """Tests if we can load LoRA state dict with low_cpu_mem_usage."""

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=False)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results.",
                )

                # Now, check for `low_cpu_mem_usage.`
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=True)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained_low_cpu = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(
                        images_lora_from_pretrained_low_cpu, images_lora_from_pretrained, atol=1e-3, rtol=1e-3
                    ),
                    "Loading from saved checkpoints with `low_cpu_mem_usage` should give same results.",
                )

427
428
429
430
431
    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
432
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
Aryan's avatar
Aryan committed
433
434

        # TODO(diffusers): Discuss a common naming convention across library for 1.0.0 release
435
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
Aryan's avatar
Aryan committed
436
437
438
439
440
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

Aryan's avatar
Aryan committed
441
        for scheduler_cls in self.scheduler_classes:
442
443
444
445
446
447
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
448
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
449
            self.assertTrue(output_no_lora.shape == self.output_shape)
450
451
452
453

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

454
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
455
456
457
458
459
460
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
461

Aryan's avatar
Aryan committed
462
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
463
464
465
466
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
467
468
469
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

470
471
472
473
474
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
475
476
477
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

478
479
480
481
482
483
484
485
486
487
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
488
        for scheduler_cls in self.scheduler_classes:
489
490
491
492
493
494
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
495
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
496
            self.assertTrue(output_no_lora.shape == self.output_shape)
497
498
499
500

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

501
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
502
503
504
505
506
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
507
508
509
510
511

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

512
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
513
514
515
516
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
517

Aryan's avatar
Aryan committed
518
            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
519
520
521
522
523
524
525
526
527
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
528
        for scheduler_cls in self.scheduler_classes:
529
530
531
532
533
534
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
535
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
536
            self.assertTrue(output_no_lora.shape == self.output_shape)
537

Aryan's avatar
Aryan committed
538
539
540
541
542
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
543

544
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
545
546
547
548
549
550
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
551
552
553
554
555
556
557

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

558
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
559
560
561
562
563
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
564

Aryan's avatar
Aryan committed
565
            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
566
567
568
569
570
571
572
573
574
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Aryan's avatar
Aryan committed
575
        for scheduler_cls in self.scheduler_classes:
576
577
578
579
580
581
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
582
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
583
            self.assertTrue(output_no_lora.shape == self.output_shape)
584

Aryan's avatar
Aryan committed
585
586
587
588
589
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
590

591
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
592
593
594
595
596
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
597

Aryan's avatar
Aryan committed
598
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
599
600

            with tempfile.TemporaryDirectory() as tmpdirname:
601
602
                modules_to_save = self._get_modules_to_save(pipe)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
603

604
605
606
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )
Sayak Paul's avatar
Sayak Paul committed
607

608
609
610
611
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

612
613
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
614

615
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
616
617
618
619
620
621

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

622
623
624
625
626
627
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
628
        for scheduler_cls in self.scheduler_classes:
629
            components, _, _ = self.get_dummy_components(scheduler_cls)
630
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
631
632
633
634
635
636
637
638
639
640
641
642
643
            text_lora_config = LoraConfig(
                r=4,
                rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3},
                lora_alpha=4,
                target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
644
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
645
            self.assertTrue(output_no_lora.shape == self.output_shape)
646
647
648
649
650
651
652
653
654
655
656

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
            # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
            # supports missing layers (PR#8324).
            state_dict = {
                f"text_encoder.{module_name}": param
                for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                if "text_model.encoder.layers.4" not in module_name
            }

657
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
658
659
660
661
662
663
664
665
666
667
668
669
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    state_dict.update(
                        {
                            f"text_encoder_2.{module_name}": param
                            for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                            if "text_model.encoder.layers.4" not in module_name
                        }
                    )
670

Aryan's avatar
Aryan committed
671
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
672
673
674
675
676
677
678
679
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

Aryan's avatar
Aryan committed
680
            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
681
682
683
684
685
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

686
687
688
689
    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Aryan's avatar
Aryan committed
690
        for scheduler_cls in self.scheduler_classes:
691
692
693
694
695
696
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
697
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
698
            self.assertTrue(output_no_lora.shape == self.output_shape)
699
700
701
702

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

703
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
704
705
706
707
708
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
709

Aryan's avatar
Aryan committed
710
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
711
712
713
714
715
716
717
718
719
720
721
722

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

            self.assertTrue(
                check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
            )

723
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
724
725
726
727
728
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                        "Lora not correctly set in text encoder 2",
                    )
729

Aryan's avatar
Aryan committed
730
            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
731
732
733
734
735
736

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

737
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
738
739
740
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Aryan's avatar
Aryan committed
741
        for scheduler_cls in self.scheduler_classes:
742
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
743
744
745
746
747
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
748
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
749
            self.assertTrue(output_no_lora.shape == self.output_shape)
750

Aryan's avatar
Aryan committed
751
752
753
754
755
756
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
757
758
759
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
760

761
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
762
763
764
765
766
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
767

Aryan's avatar
Aryan committed
768
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
769
770

            with tempfile.TemporaryDirectory() as tmpdirname:
771
772
773
774
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
Aryan's avatar
Aryan committed
775
                )
776

777
778
779
780
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

781
782
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
783

784
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
785
786
787
788
789
            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

790
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
791
792
793
794
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
795
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
796
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
Aryan's avatar
Aryan committed
797
798
799
800
801
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

Aryan's avatar
Aryan committed
802
        for scheduler_cls in self.scheduler_classes:
803
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
804
805
806
807
808
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
809
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
810
            self.assertTrue(output_no_lora.shape == self.output_shape)
811

Aryan's avatar
Aryan committed
812
813
814
815
816
817
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
818
819
820
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
821

822
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
823
824
825
826
827
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
828

Aryan's avatar
Aryan committed
829
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
830
831
832
833
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
834
835
836
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

837
838
839
840
841
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
842
843
844
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

845
846
847
848
849
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

Aryan's avatar
Aryan committed
850
851
852
853
854
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                    "The scaling parameter has not been correctly restored!",
                )
855

856
    def test_simple_inference_with_text_lora_denoiser_fused(self):
857
858
859
860
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Aryan's avatar
Aryan committed
861
        for scheduler_cls in self.scheduler_classes:
862
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
863
864
865
866
867
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
868
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
869
            self.assertTrue(output_no_lora.shape == self.output_shape)
870

Aryan's avatar
Aryan committed
871
872
873
874
875
876
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
877
878
879
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
880

881
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
882
883
884
885
886
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
887

Aryan's avatar
Aryan committed
888
889
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)

890
            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
891
892
893
894
895
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
896
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser")
897

898
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
899
900
901
902
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
903

Aryan's avatar
Aryan committed
904
            output_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
905
            self.assertFalse(
Aryan's avatar
Aryan committed
906
                np.allclose(output_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
907
908
            )

909
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
910
911
912
913
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
914
        for scheduler_cls in self.scheduler_classes:
915
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
916
917
918
919
920
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
921
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
922
            self.assertTrue(output_no_lora.shape == self.output_shape)
923

Aryan's avatar
Aryan committed
924
925
926
927
928
929
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
930
931
932
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
933

934
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
935
936
937
938
939
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
940
941
942
943
944
945

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
Aryan's avatar
Aryan committed
946
            self.assertFalse(check_if_lora_correctly_set(denoiser), "Lora not correctly unloaded in denoiser")
947

948
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
949
950
951
952
953
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
954

Aryan's avatar
Aryan committed
955
            output_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
956
            self.assertTrue(
Aryan's avatar
Aryan committed
957
                np.allclose(output_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
958
959
960
                "Fused lora should change the output",
            )

Aryan's avatar
Aryan committed
961
962
963
    def test_simple_inference_with_text_denoiser_lora_unfused(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
964
965
966
967
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
968
        for scheduler_cls in self.scheduler_classes:
969
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
970
971
972
973
974
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
975
976
977
978
979
980
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
981
982
983
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
984

985
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
986
987
988
989
990
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
991

Aryan's avatar
Aryan committed
992
993
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
994

Aryan's avatar
Aryan committed
995
996
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
997
998

            # unloading should remove the LoRA layers
Aryan's avatar
Aryan committed
999
1000
1001
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

Aryan's avatar
Aryan committed
1002
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")
1003

1004
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1005
1006
1007
1008
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )
1009
1010
1011

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
Aryan's avatar
Aryan committed
1012
1013
                np.allclose(output_fused_lora, output_unfused_lora, atol=expected_atol, rtol=expected_rtol),
                "Fused lora should not change the output",
1014
1015
            )

1016
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
1017
1018
1019
1020
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1021
        for scheduler_cls in self.scheduler_classes:
1022
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1023
1024
1025
1026
1027
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1028
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1029

Aryan's avatar
Aryan committed
1030
1031
1032
1033
1034
1035
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1036

Aryan's avatar
Aryan committed
1037
1038
1039
1040
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1041

1042
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1043
1044
1045
1046
1047
1048
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1049
1050

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1051
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1052
1053
1054
1055
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_1, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
1056
1057

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1058
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1059
1060
1061
1062
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
1063
1064

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1065
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1066
1067
1068
1069
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1088
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1089
1090
1091
1092
1093
1094

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    def test_wrong_adapter_name_raises_error(self):
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        if "text_encoder" in self.pipeline_class._lora_loadable_modules:
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        if self.has_two_text_encoders or self.has_three_text_encoders:
            if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

        with self.assertRaises(ValueError) as err_context:
            pipe.set_adapters("test")

        self.assertTrue("not in the list of present adapters" in str(err_context.exception))

        # test this works.
        pipe.set_adapters("adapter-1")
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1127
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
1128
1129
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
Aryan's avatar
Aryan committed
1130
        one adapter and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1131
        """
Aryan's avatar
Aryan committed
1132
        for scheduler_cls in self.scheduler_classes:
1133
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1134
1135
1136
1137
1138
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1139
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1140
1141
1142

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1143
1144
1145
1146

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1147

1148
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1149
1150
1151
1152
1153
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1154
1155
1156

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
Aryan's avatar
Aryan committed
1157
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1158
1159
1160

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
Aryan's avatar
Aryan committed
1161
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1177
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1178
1179
1180
1181
1182
1183

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1184
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1185
1186
1187
1188
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set differnt weights for different blocks (i.e. block lora)
        """
Aryan's avatar
Aryan committed
1189
        for scheduler_cls in self.scheduler_classes:
1190
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1191
1192
1193
1194
1195
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1196
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1197

Aryan's avatar
Aryan committed
1198
1199
1200
1201
1202
1203
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
UmerHA's avatar
UmerHA committed
1204

Aryan's avatar
Aryan committed
1205
1206
1207
1208
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1209

1210
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1211
1212
1213
1214
1215
1216
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1217
1218
1219
1220

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}

Aryan's avatar
Aryan committed
1221
1222
            pipe.set_adapters("adapter-1", scales_1)
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1223
1224

            pipe.set_adapters("adapter-2", scales_2)
Aryan's avatar
Aryan committed
1225
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1226
1227

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])
Aryan's avatar
Aryan committed
1228
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1247
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1258
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1324
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1325
1326
1327
1328
1329
1330
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1331
1332
1333

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1334

1335
        if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1336
1337
1338
            lora_loadable_components = self.pipeline_class._lora_loadable_modules
            if "text_encoder_2" in lora_loadable_components:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1339
1340
1341
1342
1343
1344
1345
1346

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1347
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1348
1349
1350
1351
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
Aryan's avatar
Aryan committed
1352
        for scheduler_cls in self.scheduler_classes:
1353
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1354
1355
1356
1357
1358
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1359
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1360

Aryan's avatar
Aryan committed
1361
1362
1363
1364
1365
1366
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1367

Aryan's avatar
Aryan committed
1368
1369
1370
1371
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1372

1373
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1374
1375
1376
1377
1378
1379
1380
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1381
1382

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1383
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1384
1385

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1386
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1387
1388

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1389
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
Aryan's avatar
Aryan committed
1407
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1408
1409
1410
1411
1412
1413
1414

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
Aryan's avatar
Aryan committed
1415
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1416
1417
1418
1419
1420
1421

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

Aryan's avatar
Aryan committed
1422
1423
1424
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1425

Aryan's avatar
Aryan committed
1426
1427
1428
1429
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1430
1431
1432
1433

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

Aryan's avatar
Aryan committed
1434
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1435
1436
1437
1438
1439
1440

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1441
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1442
1443
1444
1445
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1446
        for scheduler_cls in self.scheduler_classes:
1447
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1448
1449
1450
1451
1452
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1453
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1454

Aryan's avatar
Aryan committed
1455
1456
1457
1458
1459
1460
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1461

Aryan's avatar
Aryan committed
1462
1463
1464
1465
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1466

1467
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1468
1469
1470
1471
1472
1473
1474
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1475
1476

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1477
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1478
1479

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1480
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1481
1482

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1483
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
Aryan's avatar
Aryan committed
1502
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0))[0]
1503
1504
1505
1506
1507
1508
1509

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1510
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1511
1512
1513
1514
1515
1516

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1517
    @skip_mps
1518
    @pytest.mark.xfail(
1519
        condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
1520
1521
1522
        reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
        strict=True,
    )
1523
    def test_lora_fuse_nan(self):
Aryan's avatar
Aryan committed
1524
        for scheduler_cls in self.scheduler_classes:
1525
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1526
1527
1528
1529
1530
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1531
1532
1533
1534
1535
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1536

Aryan's avatar
Aryan committed
1537
1538
1539
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1540
1541
1542

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1543
1544
1545
1546
1547
1548
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
                    pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1549
1550
1551

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
Aryan's avatar
Aryan committed
1552
                pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
1553
1554

            # without we should not see an error, but every image will be black
Aryan's avatar
Aryan committed
1555
1556
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
            out = pipe("test", num_inference_steps=2, output_type="np")[0]
1557
1558
1559
1560
1561
1562
1563
1564

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1565
        for scheduler_cls in self.scheduler_classes:
1566
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1567
1568
1569
1570
1571
1572
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1573
1574
1575

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1576
1577
1578
1579
1580

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1581
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1594
        for scheduler_cls in self.scheduler_classes:
1595
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1596
1597
1598
1599
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

Aryan's avatar
Aryan committed
1600
1601
1602
1603
1604
1605
            # 1.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                dicts_to_be_checked = {"text_encoder": ["adapter-1"]}

1606
1607
1608
1609
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
Aryan's avatar
Aryan committed
1610
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1611
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
1612

Aryan's avatar
Aryan committed
1613
1614
1615
1616
1617
1618
1619
1620
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 2.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1621
1622
1623
1624
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
Aryan's avatar
Aryan committed
1625
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1626
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1627

Aryan's avatar
Aryan committed
1628
1629
1630
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 3.
1631
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1632
1633
1634
1635
1636

            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1637
1638
1639
1640
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
Aryan's avatar
Aryan committed
1641

1642
1643
            self.assertDictEqual(
                pipe.get_list_adapters(),
1644
                dicts_to_be_checked,
1645
1646
            )

Aryan's avatar
Aryan committed
1647
1648
1649
1650
1651
            # 4.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1652
            if self.unet_kwargs is not None:
Aryan's avatar
Aryan committed
1653
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
1654
1655
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
Aryan's avatar
Aryan committed
1656
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")
1657
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
Aryan's avatar
Aryan committed
1658

1659
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1660
1661

    @require_peft_version_greater(peft_version="0.6.2")
Aryan's avatar
Aryan committed
1662
1663
1664
    def test_simple_inference_with_text_lora_denoiser_fused_multi(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
1665
1666
1667
1668
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
Aryan's avatar
Aryan committed
1669
        for scheduler_cls in self.scheduler_classes:
1670
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1671
1672
1673
1674
1675
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1676
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1677
            self.assertTrue(output_no_lora.shape == self.output_shape)
1678

Aryan's avatar
Aryan committed
1679
1680
1681
1682
1683
1684
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
1685
1686
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1687
1688

            # Attach a second adapter
Aryan's avatar
Aryan committed
1689
1690
1691
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

Aryan's avatar
Aryan committed
1692
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1693

Aryan's avatar
Aryan committed
1694
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1695

1696
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1697
1698
1699
1700
1701
1702
1703
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1704
1705
1706

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1707
            outputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1708
1709

            pipe.set_adapters(["adapter-1"])
Aryan's avatar
Aryan committed
1710
            outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1711

Aryan's avatar
Aryan committed
1712
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-1"])
1713
1714

            # Fusing should still keep the LoRA layers so outpout should remain the same
Aryan's avatar
Aryan committed
1715
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1716
1717

            self.assertTrue(
Aryan's avatar
Aryan committed
1718
                np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
1719
1720
1721
                "Fused lora should not change the output",
            )

Aryan's avatar
Aryan committed
1722
1723
1724
1725
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            pipe.fuse_lora(
                components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-2", "adapter-1"]
            )
1726
1727

            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
1728
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1729
            self.assertTrue(
Aryan's avatar
Aryan committed
1730
                np.allclose(output_all_lora_fused, outputs_all_lora, atol=expected_atol, rtol=expected_rtol),
1731
1732
1733
                "Fused lora should not change the output",
            )

1734
1735
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
Aryan's avatar
Aryan committed
1736
        for scheduler_cls in self.scheduler_classes:
1737
1738
1739
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1740
1741
1742
1743
1744
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1745
            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1746
            self.assertTrue(output_no_dora_lora.shape == self.output_shape)
1747
1748
1749

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1750
1751
1752
1753

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1754

1755
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1756
1757
1758
1759
1760
1761
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1762

Aryan's avatar
Aryan committed
1763
            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1764
1765
1766
1767
1768
1769

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
    def test_missing_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        # To make things dynamic since we cannot settle with a single key for all the models where we
        # offer PEFT support.
        missing_key = [k for k in state_dict if "lora_A" in k][0]
        del state_dict[missing_key]

1797
        logger = logging.get_logger("diffusers.loaders.peft")
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        # Since the missing key won't contain the adapter name ("default_0").
        # Also strip out the component prefix (such as "unet." from `missing_key`).
        component = list({k.split(".")[0] for k in state_dict})[0]
        self.assertTrue(missing_key.replace(f"{component}.", "") in cap_logger.out.replace("default_0.", ""))

    def test_unexpected_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        unexpected_key = [k for k in state_dict if "lora_A" in k][0] + ".diffusers_cat"
        state_dict[unexpected_key] = torch.tensor(1.0, device=torch_device)

1832
        logger = logging.get_logger("diffusers.loaders.peft")
1833
1834
1835
1836
1837
1838
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        self.assertTrue(".diffusers_cat" in cap_logger.out)

1839
    @unittest.skip("This is failing for now - need to investigate")
1840
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1841
1842
1843
1844
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
1845
        for scheduler_cls in self.scheduler_classes:
1846
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1847
1848
1849
1850
1851
1852
1853
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1854
1855
1856
1857

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1858

1859
            if self.has_two_text_encoders or self.has_three_text_encoders:
1860
1861
1862
1863
1864
1865
1866
1867
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1868
            if self.has_two_text_encoders or self.has_three_text_encoders:
1869
1870
1871
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
Aryan's avatar
Aryan committed
1872
            _ = pipe(**inputs, generator=torch.manual_seed(0))[0]
1873
1874
1875
1876
1877
1878
1879

    def test_modify_padding_mode(self):
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

Aryan's avatar
Aryan committed
1880
        for scheduler_cls in self.scheduler_classes:
1881
1882
1883
1884
1885
1886
1887
1888
1889
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
1890
            _ = pipe(**inputs)[0]
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

    def test_set_adapters_match_attention_kwargs(self):
        """Test to check if outputs after `set_adapters()` and attention kwargs match."""
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            lora_scale = 0.5
            attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
            self.assertFalse(
                np.allclose(output_no_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            pipe.set_adapters("default", lora_scale)
            output_lora_scale_wo_kwargs = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(
                not np.allclose(output_no_lora, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
            self.assertTrue(
                np.allclose(output_lora_scale, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should match the output of `set_adapters()`.",
            )

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                output_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
                self.assertTrue(
                    not np.allclose(output_no_lora, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Lora + scale should change the output",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as attention_kwargs.",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale_wo_kwargs, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as set_adapters().",
                )