utils.py 109 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sayak Paul's avatar
Sayak Paul committed
15
import inspect
16
import os
Aryan's avatar
Aryan committed
17
import re
18
19
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
20
from itertools import product
21
22

import numpy as np
23
import pytest
24
25
26
27
28
29
30
31
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    LCMScheduler,
    UNet2DConditionModel,
)
32
from diffusers.utils import logging
33
34
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
35
    CaptureLogger,
36
    floats_tensor,
37
    is_torch_version,
38
39
    require_peft_backend,
    require_peft_version_greater,
40
    require_transformers_version_greater,
41
    skip_mps,
42
43
44
45
46
    torch_device,
)


if is_peft_available():
47
    from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


74
75
76
77
78
79
def initialize_dummy_state_dict(state_dict):
    if not all(v.device.type == "meta" for _, v in state_dict.items()):
        raise ValueError("`state_dict` has non-meta values.")
    return {k: torch.randn(v.shape, device=torch_device, dtype=v.dtype) for k, v in state_dict.items()}


80
81
82
POSSIBLE_ATTENTION_KWARGS_NAMES = ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]


83
84
85
@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
Aryan's avatar
Aryan committed
86

87
88
    scheduler_cls = None
    scheduler_kwargs = None
Aryan's avatar
Aryan committed
89
    scheduler_classes = [DDIMScheduler, LCMScheduler]
Sayak Paul's avatar
Sayak Paul committed
90

91
    has_two_text_encoders = False
92
    has_three_text_encoders = False
93
94
95
96
97
98
    text_encoder_cls, text_encoder_id, text_encoder_subfolder = None, None, ""
    text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = None, None, ""
    text_encoder_3_cls, text_encoder_3_id, text_encoder_3_subfolder = None, None, ""
    tokenizer_cls, tokenizer_id, tokenizer_subfolder = None, None, ""
    tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = None, None, ""
    tokenizer_3_cls, tokenizer_3_id, tokenizer_3_subfolder = None, None, ""
Sayak Paul's avatar
Sayak Paul committed
99

100
    unet_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
101
    transformer_cls = None
102
    transformer_kwargs = None
Aryan's avatar
Aryan committed
103
    vae_cls = AutoencoderKL
104
105
    vae_kwargs = None

Aryan's avatar
Aryan committed
106
107
    text_encoder_target_modules = ["q_proj", "k_proj", "v_proj", "out_proj"]

108
    def get_dummy_components(self, scheduler_cls=None, use_dora=False):
109
110
111
112
113
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

114
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
115
116
117
        rank = 4

        torch.manual_seed(0)
118
119
120
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
Sayak Paul's avatar
Sayak Paul committed
121
            transformer = self.transformer_cls(**self.transformer_kwargs)
122
123
124
125

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
Aryan's avatar
Aryan committed
126
        vae = self.vae_cls(**self.vae_kwargs)
127

128
129
130
131
        text_encoder = self.text_encoder_cls.from_pretrained(
            self.text_encoder_id, subfolder=self.text_encoder_subfolder
        )
        tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id, subfolder=self.tokenizer_subfolder)
132

Sayak Paul's avatar
Sayak Paul committed
133
        if self.text_encoder_2_cls is not None:
134
135
136
137
138
139
            text_encoder_2 = self.text_encoder_2_cls.from_pretrained(
                self.text_encoder_2_id, subfolder=self.text_encoder_2_subfolder
            )
            tokenizer_2 = self.tokenizer_2_cls.from_pretrained(
                self.tokenizer_2_id, subfolder=self.tokenizer_2_subfolder
            )
140

Sayak Paul's avatar
Sayak Paul committed
141
        if self.text_encoder_3_cls is not None:
142
143
144
145
146
147
            text_encoder_3 = self.text_encoder_3_cls.from_pretrained(
                self.text_encoder_3_id, subfolder=self.text_encoder_3_subfolder
            )
            tokenizer_3 = self.tokenizer_3_cls.from_pretrained(
                self.tokenizer_3_id, subfolder=self.tokenizer_3_subfolder
            )
148

149
150
151
        text_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
Aryan's avatar
Aryan committed
152
            target_modules=self.text_encoder_target_modules,
153
            init_lora_weights=False,
154
            use_dora=use_dora,
155
156
        )

157
        denoiser_lora_config = LoraConfig(
158
159
160
161
162
            r=rank,
            lora_alpha=rank,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
163
164
        )

Sayak Paul's avatar
Sayak Paul committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        pipeline_components = {
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        # Denoiser
        if self.unet_kwargs is not None:
            pipeline_components.update({"unet": unet})
        elif self.transformer_kwargs is not None:
            pipeline_components.update({"transformer": transformer})

        # Remaining text encoders.
        if self.text_encoder_2_cls is not None:
            pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
        if self.text_encoder_3_cls is not None:
            pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})

        # Remaining stuff
        init_params = inspect.signature(self.pipeline_class.__init__).parameters
        if "safety_checker" in init_params:
            pipeline_components.update({"safety_checker": None})
        if "feature_extractor" in init_params:
            pipeline_components.update({"feature_extractor": None})
        if "image_encoder" in init_params:
            pipeline_components.update({"image_encoder": None})
191

192
        return pipeline_components, text_lora_config, denoiser_lora_config
193

Sayak Paul's avatar
Sayak Paul committed
194
195
196
197
    @property
    def output_shape(self):
        raise NotImplementedError

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

219
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
220
221
222
223
224
225
226
227
228
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

229
230
231
232
233
234
235
236
237
238
239
    def _get_lora_state_dicts(self, modules_to_save):
        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(module)
        return state_dicts

    def _get_modules_to_save(self, pipe, has_denoiser=False):
        modules_to_save = {}
        lora_loadable_modules = self.pipeline_class._lora_loadable_modules

240
241
242
243
244
        if (
            "text_encoder" in lora_loadable_modules
            and hasattr(pipe, "text_encoder")
            and getattr(pipe.text_encoder, "peft_config", None) is not None
        ):
245
246
            modules_to_save["text_encoder"] = pipe.text_encoder

247
248
249
250
251
        if (
            "text_encoder_2" in lora_loadable_modules
            and hasattr(pipe, "text_encoder_2")
            and getattr(pipe.text_encoder_2, "peft_config", None) is not None
        ):
252
253
254
255
256
257
258
259
260
261
262
            modules_to_save["text_encoder_2"] = pipe.text_encoder_2

        if has_denoiser:
            if "unet" in lora_loadable_modules and hasattr(pipe, "unet"):
                modules_to_save["unet"] = pipe.unet

            if "transformer" in lora_loadable_modules and hasattr(pipe, "transformer"):
                modules_to_save["transformer"] = pipe.transformer

        return modules_to_save

263
264
265
266
    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
267
        for scheduler_cls in self.scheduler_classes:
268
269
270
271
272
273
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
274
            output_no_lora = pipe(**inputs)[0]
Sayak Paul's avatar
Sayak Paul committed
275
            self.assertTrue(output_no_lora.shape == self.output_shape)
276
277
278
279
280
281

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
282
        for scheduler_cls in self.scheduler_classes:
283
284
285
286
287
288
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
289
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
290
            self.assertTrue(output_no_lora.shape == self.output_shape)
291
292
293
294

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

295
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
296
297
298
299
300
301
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
302

Aryan's avatar
Aryan committed
303
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
304
305
306
307
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    @require_peft_version_greater("0.13.1")
    def test_low_cpu_mem_usage_with_injection(self):
        """Tests if we can inject LoRA state dict with low_cpu_mem_usage."""
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                inject_adapter_in_model(text_lora_config, pipe.text_encoder, low_cpu_mem_usage=True)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder."
                )
                self.assertTrue(
                    "meta" in {p.device.type for p in pipe.text_encoder.parameters()},
                    "The LoRA params should be on 'meta' device.",
                )

                te_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder))
                set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
                self.assertTrue(
                    "meta" not in {p.device.type for p in pipe.text_encoder.parameters()},
                    "No param should be on 'meta' device.",
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            inject_adapter_in_model(denoiser_lora_config, denoiser, low_cpu_mem_usage=True)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
            self.assertTrue(
                "meta" in {p.device.type for p in denoiser.parameters()}, "The LoRA params should be on 'meta' device."
            )

            denoiser_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(denoiser))
            set_peft_model_state_dict(denoiser, denoiser_state_dict, low_cpu_mem_usage=True)
            self.assertTrue(
                "meta" not in {p.device.type for p in denoiser.parameters()}, "No param should be on 'meta' device."
            )

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    inject_adapter_in_model(text_lora_config, pipe.text_encoder_2, low_cpu_mem_usage=True)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    self.assertTrue(
                        "meta" in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "The LoRA params should be on 'meta' device.",
                    )

                    te2_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder_2))
                    set_peft_model_state_dict(pipe.text_encoder_2, te2_state_dict, low_cpu_mem_usage=True)
                    self.assertTrue(
                        "meta" not in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "No param should be on 'meta' device.",
                    )

            _, _, inputs = self.get_dummy_inputs()
            output_lora = pipe(**inputs)[0]
            self.assertTrue(output_lora.shape == self.output_shape)

    @require_peft_version_greater("0.13.1")
370
    @require_transformers_version_greater("4.45.2")
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    def test_low_cpu_mem_usage_with_loading(self):
        """Tests if we can load LoRA state dict with low_cpu_mem_usage."""

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=False)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results.",
                )

                # Now, check for `low_cpu_mem_usage.`
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=True)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained_low_cpu = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(
                        images_lora_from_pretrained_low_cpu, images_lora_from_pretrained, atol=1e-3, rtol=1e-3
                    ),
                    "Loading from saved checkpoints with `low_cpu_mem_usage` should give same results.",
                )

438
439
440
441
442
    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
443
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
Aryan's avatar
Aryan committed
444
445

        # TODO(diffusers): Discuss a common naming convention across library for 1.0.0 release
446
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
Aryan's avatar
Aryan committed
447
448
449
450
451
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

Aryan's avatar
Aryan committed
452
        for scheduler_cls in self.scheduler_classes:
453
454
455
456
457
458
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
459
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
460
            self.assertTrue(output_no_lora.shape == self.output_shape)
461
462
463
464

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

465
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
466
467
468
469
470
471
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
472

Aryan's avatar
Aryan committed
473
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
474
475
476
477
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
478
479
480
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

481
482
483
484
485
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
486
487
488
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

489
490
491
492
493
494
495
496
497
498
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
499
        for scheduler_cls in self.scheduler_classes:
500
501
502
503
504
505
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
506
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
507
            self.assertTrue(output_no_lora.shape == self.output_shape)
508
509
510
511

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

512
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
513
514
515
516
517
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
518
519
520
521
522

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

523
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
524
525
526
527
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
528

Aryan's avatar
Aryan committed
529
            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
530
531
532
533
534
535
536
537
538
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
539
        for scheduler_cls in self.scheduler_classes:
540
541
542
543
544
545
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
546
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
547
            self.assertTrue(output_no_lora.shape == self.output_shape)
548

Aryan's avatar
Aryan committed
549
550
551
552
553
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
554

555
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
556
557
558
559
560
561
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
562
563
564
565
566
567
568

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

569
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
570
571
572
573
574
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
575

Aryan's avatar
Aryan committed
576
            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
577
578
579
580
581
582
583
584
585
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Aryan's avatar
Aryan committed
586
        for scheduler_cls in self.scheduler_classes:
587
588
589
590
591
592
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
593
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
594
            self.assertTrue(output_no_lora.shape == self.output_shape)
595

Aryan's avatar
Aryan committed
596
597
598
599
600
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
601

602
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
603
604
605
606
607
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
608

Aryan's avatar
Aryan committed
609
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
610
611

            with tempfile.TemporaryDirectory() as tmpdirname:
612
613
                modules_to_save = self._get_modules_to_save(pipe)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
614

615
616
617
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )
Sayak Paul's avatar
Sayak Paul committed
618

619
620
621
622
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

623
624
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
625

626
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
627
628
629
630
631
632

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

633
634
635
636
637
638
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
639
        for scheduler_cls in self.scheduler_classes:
640
            components, _, _ = self.get_dummy_components(scheduler_cls)
641
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
642
643
644
645
646
647
648
649
650
651
652
653
654
            text_lora_config = LoraConfig(
                r=4,
                rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3},
                lora_alpha=4,
                target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
655
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
656
            self.assertTrue(output_no_lora.shape == self.output_shape)
657
658
659
660
661
662
663
664
665
666
667

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
            # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
            # supports missing layers (PR#8324).
            state_dict = {
                f"text_encoder.{module_name}": param
                for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                if "text_model.encoder.layers.4" not in module_name
            }

668
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
669
670
671
672
673
674
675
676
677
678
679
680
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    state_dict.update(
                        {
                            f"text_encoder_2.{module_name}": param
                            for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                            if "text_model.encoder.layers.4" not in module_name
                        }
                    )
681

Aryan's avatar
Aryan committed
682
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
683
684
685
686
687
688
689
690
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

Aryan's avatar
Aryan committed
691
            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
692
693
694
695
696
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

697
698
699
700
    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Aryan's avatar
Aryan committed
701
        for scheduler_cls in self.scheduler_classes:
702
703
704
705
706
707
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
708
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
709
            self.assertTrue(output_no_lora.shape == self.output_shape)
710
711
712
713

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

714
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
715
716
717
718
719
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
720

Aryan's avatar
Aryan committed
721
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
722
723
724
725
726
727
728
729
730
731
732
733

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

            self.assertTrue(
                check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
            )

734
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
735
736
737
738
739
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                        "Lora not correctly set in text encoder 2",
                    )
740

Aryan's avatar
Aryan committed
741
            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
742
743
744
745
746
747

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

748
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
749
750
751
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Aryan's avatar
Aryan committed
752
        for scheduler_cls in self.scheduler_classes:
753
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
754
755
756
757
758
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
759
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
760
            self.assertTrue(output_no_lora.shape == self.output_shape)
761

Aryan's avatar
Aryan committed
762
763
764
765
766
767
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
768
769
770
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
771

772
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
773
774
775
776
777
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
778

Aryan's avatar
Aryan committed
779
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
780
781

            with tempfile.TemporaryDirectory() as tmpdirname:
782
783
784
785
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
Aryan's avatar
Aryan committed
786
                )
787

788
789
790
791
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

792
793
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
794

795
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
796
797
798
799
800
            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

801
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
802
803
804
805
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
806
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
807
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
Aryan's avatar
Aryan committed
808
809
810
811
812
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

Aryan's avatar
Aryan committed
813
        for scheduler_cls in self.scheduler_classes:
814
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
815
816
817
818
819
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
820
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
821
            self.assertTrue(output_no_lora.shape == self.output_shape)
822

Aryan's avatar
Aryan committed
823
824
825
826
827
828
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
829
830
831
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
832

833
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
834
835
836
837
838
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
839

Aryan's avatar
Aryan committed
840
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
841
842
843
844
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
845
846
847
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

848
849
850
851
852
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
853
854
855
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

856
857
858
859
860
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

Aryan's avatar
Aryan committed
861
862
863
864
865
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                    "The scaling parameter has not been correctly restored!",
                )
866

867
    def test_simple_inference_with_text_lora_denoiser_fused(self):
868
869
870
871
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Aryan's avatar
Aryan committed
872
        for scheduler_cls in self.scheduler_classes:
873
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
874
875
876
877
878
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
879
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
880
            self.assertTrue(output_no_lora.shape == self.output_shape)
881

Aryan's avatar
Aryan committed
882
883
884
885
886
887
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
888
889
890
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
891

892
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
893
894
895
896
897
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
898

Aryan's avatar
Aryan committed
899
900
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)

901
            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
902
903
904
905
906
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
907
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser")
908

909
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
910
911
912
913
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
914

Aryan's avatar
Aryan committed
915
            output_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
916
            self.assertFalse(
Aryan's avatar
Aryan committed
917
                np.allclose(output_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
918
919
            )

920
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
921
922
923
924
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
925
        for scheduler_cls in self.scheduler_classes:
926
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
927
928
929
930
931
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
932
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
933
            self.assertTrue(output_no_lora.shape == self.output_shape)
934

Aryan's avatar
Aryan committed
935
936
937
938
939
940
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
941
942
943
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
944

945
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
946
947
948
949
950
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
951
952
953
954
955
956

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
Aryan's avatar
Aryan committed
957
            self.assertFalse(check_if_lora_correctly_set(denoiser), "Lora not correctly unloaded in denoiser")
958

959
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
960
961
962
963
964
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
965

Aryan's avatar
Aryan committed
966
            output_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
967
            self.assertTrue(
Aryan's avatar
Aryan committed
968
                np.allclose(output_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
969
970
971
                "Fused lora should change the output",
            )

Aryan's avatar
Aryan committed
972
973
974
    def test_simple_inference_with_text_denoiser_lora_unfused(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
975
976
977
978
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
979
        for scheduler_cls in self.scheduler_classes:
980
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
981
982
983
984
985
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
986
987
988
989
990
991
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
992
993
994
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
995

996
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
997
998
999
1000
1001
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1002

Aryan's avatar
Aryan committed
1003
1004
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1005

Aryan's avatar
Aryan committed
1006
1007
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1008
1009

            # unloading should remove the LoRA layers
Aryan's avatar
Aryan committed
1010
1011
1012
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

Aryan's avatar
Aryan committed
1013
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")
1014

1015
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1016
1017
1018
1019
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )
1020
1021
1022

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
Aryan's avatar
Aryan committed
1023
1024
                np.allclose(output_fused_lora, output_unfused_lora, atol=expected_atol, rtol=expected_rtol),
                "Fused lora should not change the output",
1025
1026
            )

1027
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
1028
1029
1030
1031
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1032
        for scheduler_cls in self.scheduler_classes:
1033
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1034
1035
1036
1037
1038
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1039
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1040

Aryan's avatar
Aryan committed
1041
1042
1043
1044
1045
1046
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1047

Aryan's avatar
Aryan committed
1048
1049
1050
1051
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1052

1053
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1054
1055
1056
1057
1058
1059
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1060
1061

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1062
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1063
1064
1065
1066
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_1, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
1067
1068

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1069
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1070
1071
1072
1073
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
1074
1075

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1076
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1077
1078
1079
1080
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1099
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1100
1101
1102
1103
1104
1105

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
    def test_wrong_adapter_name_raises_error(self):
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        if "text_encoder" in self.pipeline_class._lora_loadable_modules:
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        if self.has_two_text_encoders or self.has_three_text_encoders:
            if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

        with self.assertRaises(ValueError) as err_context:
            pipe.set_adapters("test")

        self.assertTrue("not in the list of present adapters" in str(err_context.exception))

        # test this works.
        pipe.set_adapters("adapter-1")
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1138
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
1139
1140
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
Aryan's avatar
Aryan committed
1141
        one adapter and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1142
        """
Aryan's avatar
Aryan committed
1143
        for scheduler_cls in self.scheduler_classes:
1144
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1145
1146
1147
1148
1149
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1150
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1151
1152
1153

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1154
1155
1156
1157

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1158

1159
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1160
1161
1162
1163
1164
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1165
1166
1167

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
Aryan's avatar
Aryan committed
1168
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1169
1170
1171

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
Aryan's avatar
Aryan committed
1172
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1188
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1189
1190
1191
1192
1193
1194

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1195
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1196
1197
1198
1199
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set differnt weights for different blocks (i.e. block lora)
        """
Aryan's avatar
Aryan committed
1200
        for scheduler_cls in self.scheduler_classes:
1201
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1202
1203
1204
1205
1206
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1207
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1208

Aryan's avatar
Aryan committed
1209
1210
1211
1212
1213
1214
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
UmerHA's avatar
UmerHA committed
1215

Aryan's avatar
Aryan committed
1216
1217
1218
1219
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1220

1221
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1222
1223
1224
1225
1226
1227
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1228
1229
1230
1231

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}

Aryan's avatar
Aryan committed
1232
1233
            pipe.set_adapters("adapter-1", scales_1)
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1234
1235

            pipe.set_adapters("adapter-2", scales_2)
Aryan's avatar
Aryan committed
1236
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1237
1238

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])
Aryan's avatar
Aryan committed
1239
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1258
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1269
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1335
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1336
1337
1338
1339
1340
1341
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1342
1343
1344

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1345

1346
        if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1347
1348
1349
            lora_loadable_components = self.pipeline_class._lora_loadable_modules
            if "text_encoder_2" in lora_loadable_components:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1350
1351
1352
1353
1354
1355
1356
1357

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1358
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1359
1360
1361
1362
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
Aryan's avatar
Aryan committed
1363
        for scheduler_cls in self.scheduler_classes:
1364
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1365
1366
1367
1368
1369
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1370
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1371

Aryan's avatar
Aryan committed
1372
1373
1374
1375
1376
1377
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1378

Aryan's avatar
Aryan committed
1379
1380
1381
1382
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1383

1384
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1385
1386
1387
1388
1389
1390
1391
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1392
1393

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1394
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1395
1396

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1397
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1398
1399

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1400
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
Aryan's avatar
Aryan committed
1418
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1419
1420
1421
1422
1423
1424
1425

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
Aryan's avatar
Aryan committed
1426
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1427
1428
1429
1430
1431
1432

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

Aryan's avatar
Aryan committed
1433
1434
1435
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1436

Aryan's avatar
Aryan committed
1437
1438
1439
1440
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1441
1442
1443
1444

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

Aryan's avatar
Aryan committed
1445
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1446
1447
1448
1449
1450
1451

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1452
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1453
1454
1455
1456
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1457
        for scheduler_cls in self.scheduler_classes:
1458
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1459
1460
1461
1462
1463
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1464
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1465

Aryan's avatar
Aryan committed
1466
1467
1468
1469
1470
1471
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1472

Aryan's avatar
Aryan committed
1473
1474
1475
1476
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1477

1478
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1479
1480
1481
1482
1483
1484
1485
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1486
1487

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1488
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1489
1490

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1491
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1492
1493

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1494
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
Aryan's avatar
Aryan committed
1513
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0))[0]
1514
1515
1516
1517
1518
1519
1520

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1521
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1522
1523
1524
1525
1526
1527

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1528
    @skip_mps
1529
    @pytest.mark.xfail(
1530
        condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
1531
        reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
1532
        strict=False,
1533
    )
1534
    def test_lora_fuse_nan(self):
Aryan's avatar
Aryan committed
1535
        for scheduler_cls in self.scheduler_classes:
1536
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1537
1538
1539
1540
1541
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1542
1543
1544
1545
1546
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1547

Aryan's avatar
Aryan committed
1548
1549
1550
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1551
1552
1553

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1554
1555
1556
1557
1558
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
1559
1560
1561
1562
1563
1564
                    named_modules = [name for name, _ in pipe.transformer.named_modules()]
                    has_attn1 = any("attn1" in name for name in named_modules)
                    if has_attn1:
                        pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
                    else:
                        pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1565
1566
1567

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
Aryan's avatar
Aryan committed
1568
                pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
1569
1570

            # without we should not see an error, but every image will be black
Aryan's avatar
Aryan committed
1571
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
Sayak Paul's avatar
Sayak Paul committed
1572
            out = pipe(**inputs)[0]
1573
1574
1575
1576
1577
1578
1579
1580

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1581
        for scheduler_cls in self.scheduler_classes:
1582
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1583
1584
1585
1586
1587
1588
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1589
1590
1591

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1592
1593
1594
1595
1596

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1597
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1610
        for scheduler_cls in self.scheduler_classes:
1611
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1612
1613
1614
1615
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

Aryan's avatar
Aryan committed
1616
1617
1618
1619
1620
1621
            # 1.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                dicts_to_be_checked = {"text_encoder": ["adapter-1"]}

1622
1623
1624
1625
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
Aryan's avatar
Aryan committed
1626
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1627
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
1628

Aryan's avatar
Aryan committed
1629
1630
1631
1632
1633
1634
1635
1636
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 2.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1637
1638
1639
1640
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
Aryan's avatar
Aryan committed
1641
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1642
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1643

Aryan's avatar
Aryan committed
1644
1645
1646
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 3.
1647
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1648
1649
1650
1651
1652

            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1653
1654
1655
1656
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
Aryan's avatar
Aryan committed
1657

1658
1659
            self.assertDictEqual(
                pipe.get_list_adapters(),
1660
                dicts_to_be_checked,
1661
1662
            )

Aryan's avatar
Aryan committed
1663
1664
1665
1666
1667
            # 4.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1668
            if self.unet_kwargs is not None:
Aryan's avatar
Aryan committed
1669
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
1670
1671
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
Aryan's avatar
Aryan committed
1672
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")
1673
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
Aryan's avatar
Aryan committed
1674

1675
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1676
1677

    @require_peft_version_greater(peft_version="0.6.2")
Aryan's avatar
Aryan committed
1678
1679
1680
    def test_simple_inference_with_text_lora_denoiser_fused_multi(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
1681
1682
1683
1684
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
Aryan's avatar
Aryan committed
1685
        for scheduler_cls in self.scheduler_classes:
1686
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1687
1688
1689
1690
1691
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1692
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1693
            self.assertTrue(output_no_lora.shape == self.output_shape)
1694

Aryan's avatar
Aryan committed
1695
1696
1697
1698
1699
1700
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
1701
1702
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1703
1704

            # Attach a second adapter
Aryan's avatar
Aryan committed
1705
1706
1707
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

Aryan's avatar
Aryan committed
1708
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1709

Aryan's avatar
Aryan committed
1710
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1711

1712
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1713
1714
1715
1716
1717
1718
1719
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1720
1721
1722

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1723
            outputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1724
1725

            pipe.set_adapters(["adapter-1"])
Aryan's avatar
Aryan committed
1726
            outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1727

Aryan's avatar
Aryan committed
1728
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-1"])
1729
1730

            # Fusing should still keep the LoRA layers so outpout should remain the same
Aryan's avatar
Aryan committed
1731
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1732
1733

            self.assertTrue(
Aryan's avatar
Aryan committed
1734
                np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
1735
1736
1737
                "Fused lora should not change the output",
            )

Aryan's avatar
Aryan committed
1738
1739
1740
1741
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            pipe.fuse_lora(
                components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-2", "adapter-1"]
            )
1742
1743

            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
1744
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1745
            self.assertTrue(
Aryan's avatar
Aryan committed
1746
                np.allclose(output_all_lora_fused, outputs_all_lora, atol=expected_atol, rtol=expected_rtol),
1747
1748
1749
                "Fused lora should not change the output",
            )

1750
1751
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
Aryan's avatar
Aryan committed
1752
        for scheduler_cls in self.scheduler_classes:
1753
1754
1755
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1756
1757
1758
1759
1760
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1761
            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1762
            self.assertTrue(output_no_dora_lora.shape == self.output_shape)
1763
1764
1765

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1766
1767
1768
1769

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1770

1771
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1772
1773
1774
1775
1776
1777
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1778

Aryan's avatar
Aryan committed
1779
            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1780
1781
1782
1783
1784
1785

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
    def test_missing_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        # To make things dynamic since we cannot settle with a single key for all the models where we
        # offer PEFT support.
        missing_key = [k for k in state_dict if "lora_A" in k][0]
        del state_dict[missing_key]

1813
        logger = logging.get_logger("diffusers.loaders.peft")
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        # Since the missing key won't contain the adapter name ("default_0").
        # Also strip out the component prefix (such as "unet." from `missing_key`).
        component = list({k.split(".")[0] for k in state_dict})[0]
        self.assertTrue(missing_key.replace(f"{component}.", "") in cap_logger.out.replace("default_0.", ""))

    def test_unexpected_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        unexpected_key = [k for k in state_dict if "lora_A" in k][0] + ".diffusers_cat"
        state_dict[unexpected_key] = torch.tensor(1.0, device=torch_device)

1848
        logger = logging.get_logger("diffusers.loaders.peft")
1849
1850
1851
1852
1853
1854
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        self.assertTrue(".diffusers_cat" in cap_logger.out)

1855
    @unittest.skip("This is failing for now - need to investigate")
1856
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1857
1858
1859
1860
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
1861
        for scheduler_cls in self.scheduler_classes:
1862
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1863
1864
1865
1866
1867
1868
1869
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1870
1871
1872
1873

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1874

1875
            if self.has_two_text_encoders or self.has_three_text_encoders:
1876
1877
1878
1879
1880
1881
1882
1883
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1884
            if self.has_two_text_encoders or self.has_three_text_encoders:
1885
1886
1887
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
Aryan's avatar
Aryan committed
1888
            _ = pipe(**inputs, generator=torch.manual_seed(0))[0]
1889
1890
1891
1892
1893
1894
1895

    def test_modify_padding_mode(self):
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

Aryan's avatar
Aryan committed
1896
        for scheduler_cls in self.scheduler_classes:
1897
1898
1899
1900
1901
1902
1903
1904
1905
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
1906
            _ = pipe(**inputs)[0]
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

    def test_set_adapters_match_attention_kwargs(self):
        """Test to check if outputs after `set_adapters()` and attention kwargs match."""
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            lora_scale = 0.5
            attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
            self.assertFalse(
                np.allclose(output_no_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            pipe.set_adapters("default", lora_scale)
            output_lora_scale_wo_kwargs = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(
                not np.allclose(output_no_lora, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
            self.assertTrue(
                np.allclose(output_lora_scale, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should match the output of `set_adapters()`.",
            )

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                output_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
                self.assertTrue(
                    not np.allclose(output_no_lora, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Lora + scale should change the output",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as attention_kwargs.",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale_wo_kwargs, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as set_adapters().",
                )
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101

    @require_peft_version_greater("0.13.2")
    def test_lora_B_bias(self):
        # Currently, this test is only relevant for Flux Control LoRA as we are not
        # aware of any other LoRA checkpoint that has its `lora_B` biases trained.
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # keep track of the bias values of the base layers to perform checks later.
        bias_values = {}
        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, module in denoiser.named_modules():
            if any(k in name for k in ["to_q", "to_k", "to_v", "to_out.0"]):
                if module.bias is not None:
                    bias_values[name] = module.bias.data.clone()

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        logger = logging.get_logger("diffusers.loaders.lora_pipeline")
        logger.setLevel(logging.INFO)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser_lora_config.lora_bias = False
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_false_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
        pipe.delete_adapters("adapter-1")

        denoiser_lora_config.lora_bias = True
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_true_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        self.assertFalse(np.allclose(original_output, lora_bias_false_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(original_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(lora_bias_false_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))

    def test_correct_lora_configs_with_different_ranks(self):
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")

        lora_output_same_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, _ in denoiser.named_modules():
            if "to_k" in name and "attn" in name and "lora" not in name:
                module_name_to_rank_update = name.replace(".base_layer.", ".")
                break

        # change the rank_pattern
        updated_rank = denoiser_lora_config.r * 2
        denoiser_lora_config.rank_pattern = {module_name_to_rank_update: updated_rank}

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.unet.peft_config["adapter-1"].rank_pattern
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.transformer.peft_config["adapter-1"].rank_pattern

        self.assertTrue(updated_rank_pattern == {module_name_to_rank_update: updated_rank})

        lora_output_diff_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_same_rank, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_rank, lora_output_same_rank, atol=1e-3, rtol=1e-3))

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        # similarly change the alpha_pattern
        updated_alpha = denoiser_lora_config.lora_alpha * 2
        denoiser_lora_config.alpha_pattern = {module_name_to_rank_update: updated_alpha}
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.unet.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.transformer.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )

        lora_output_diff_alpha = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))
Aryan's avatar
Aryan committed
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

    def test_layerwise_casting_inference_denoiser(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if "lora" in name or any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def initialize_pipeline(storage_dtype=None, compute_dtype=torch.float32):
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            if storage_dtype is not None:
                denoiser.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
                check_linear_dtype(denoiser, storage_dtype, compute_dtype)

            return pipe

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe_fp32 = initialize_pipeline(storage_dtype=None)
        pipe_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_fp32 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.float32)
        pipe_float8_e4m3_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_bf16 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
        pipe_float8_e4m3_bf16(**inputs, generator=torch.manual_seed(0))[0]
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250

    @require_peft_version_greater("0.14.0")
    def test_layerwise_casting_peft_input_autocast_denoiser(self):
        r"""
        A test that checks if layerwise casting works correctly with PEFT layers and forward pass does not fail. This
        is different from `test_layerwise_casting_inference_denoiser` as that disables the application of layerwise
        cast hooks on the PEFT layers (relevant logic in `models.modeling_utils.ModelMixin.enable_layerwise_casting`).
        In this test, we enable the layerwise casting on the PEFT layers as well. If run with PEFT version <= 0.14.0,
        this test will fail with the following error:

        ```
        RuntimeError: expected mat1 and mat2 to have the same dtype, but got: c10::Float8_e4m3fn != float
        ```

        See the docstring of [`hooks.layerwise_casting.PeftInputAutocastDisableHook`] for more details.
        """

        from diffusers.hooks.layerwise_casting import (
            _PEFT_AUTOCAST_DISABLE_HOOK,
            DEFAULT_SKIP_MODULES_PATTERN,
            SUPPORTED_PYTORCH_LAYERS,
            apply_layerwise_casting,
        )

        storage_dtype = torch.float8_e4m3fn
        compute_dtype = torch.float32

        def check_module(denoiser):
            # This will also check if the peft layers are in torch.float8_e4m3fn dtype (unlike test_layerwise_casting_inference_denoiser)
            for name, module in denoiser.named_modules():
                if not isinstance(module, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(module, "weight", None) is not None:
                    self.assertEqual(module.weight.dtype, dtype_to_check)
                if getattr(module, "bias", None) is not None:
                    self.assertEqual(module.bias.dtype, dtype_to_check)
                if isinstance(module, BaseTunerLayer):
                    self.assertTrue(getattr(module, "_diffusers_hook", None) is not None)
                    self.assertTrue(module._diffusers_hook.get_hook(_PEFT_AUTOCAST_DISABLE_HOOK) is not None)

        # 1. Test forward with add_adapter
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device, dtype=compute_dtype)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
        if getattr(denoiser, "_skip_layerwise_casting_patterns", None) is not None:
            patterns_to_check += tuple(denoiser._skip_layerwise_casting_patterns)

        apply_layerwise_casting(
            denoiser, storage_dtype=storage_dtype, compute_dtype=compute_dtype, skip_modules_pattern=patterns_to_check
        )
        check_module(denoiser)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        pipe(**inputs, generator=torch.manual_seed(0))[0]

        # 2. Test forward with load_lora_weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
            )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            components, _, _ = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)
            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            apply_layerwise_casting(
                denoiser,
                storage_dtype=storage_dtype,
                compute_dtype=compute_dtype,
                skip_modules_pattern=patterns_to_check,
            )
            check_module(denoiser)

            _, _, inputs = self.get_dummy_inputs(with_generator=False)
            pipe(**inputs, generator=torch.manual_seed(0))[0]