scheduling_ddpm_flax.py 12.8 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
import jax.numpy as jnp
from jax import random

25
26
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
from ..utils import deprecate
27
28
29
30
31
32
from .scheduling_utils_flax import (
    _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS,
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
    broadcast_to_shape_from_left,
)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> jnp.ndarray:
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return jnp.array(betas, dtype=jnp.float32)


@flax.struct.dataclass
class DDPMSchedulerState:
    # setable values
    timesteps: jnp.ndarray
    num_inference_steps: Optional[int] = None

    @classmethod
    def create(cls, num_train_timesteps: int):
        return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1])


@dataclass
76
class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput):
77
78
79
    state: DDPMSchedulerState


80
class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
81
82
83
84
85
86
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
87
88
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
106
107
        predict_epsilon (`bool`):
            optional flag to use when the model predicts the noise (epsilon), or the samples instead of the noise.
108
109
110

    """

111
112
    _compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()

113
114
115
116
    @property
    def has_state(self):
        return True

117
118
119
120
121
122
123
124
125
126
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
127
        predict_epsilon: bool = True,
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    ):
        if trained_betas is not None:
            self.betas = jnp.asarray(trained_betas)
        elif beta_schedule == "linear":
            self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)
        self.one = jnp.array(1.0)

146
147
    def create_state(self):
        return DDPMSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps)
148

149
150
151
    def set_timesteps(
        self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple = ()
    ) -> DDPMSchedulerState:
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DDIMSchedulerState`):
                the `FlaxDDPMScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
        timesteps = jnp.arange(
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps
        )[::-1]
        return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps)

    def _get_variance(self, t, predicted_variance=None, variance_type=None):
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = jnp.clip(variance, a_min=1e-20)
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif variance_type == "fixed_small_log":
            variance = jnp.log(jnp.clip(variance, a_min=1e-20))
        elif variance_type == "fixed_large":
            variance = self.betas[t]
        elif variance_type == "fixed_large_log":
            # Glide max_log
            variance = jnp.log(self.betas[t])
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    def step(
        self,
        state: DDPMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        key: random.KeyArray,
        predict_epsilon: bool = True,
        return_dict: bool = True,
209
        **kwargs,
210
    ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
211
212
213
214
215
216
217
218
219
220
221
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            key (`random.KeyArray`): a PRNG key.
222
            return_dict (`bool`): option for returning tuple rather than FlaxDDPMSchedulerOutput class
223
224

        Returns:
225
226
            [`FlaxDDPMSchedulerOutput`] or `tuple`: [`FlaxDDPMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
227
228

        """
229
230
        message = (
            "Please make sure to instantiate your scheduler with `predict_epsilon` instead. E.g. `scheduler ="
231
            " DDPMScheduler.from_pretrained(<model_id>, predict_epsilon=True)`."
232
233
234
235
236
237
238
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
        if predict_epsilon is not None and predict_epsilon != self.config.predict_epsilon:
            new_config = dict(self.config)
            new_config["predict_epsilon"] = predict_epsilon
            self._internal_dict = FrozenDict(new_config)

239
240
        t = timestep

241
        if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
242
243
244
245
246
247
248
249
250
251
252
253
            model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
254
        if self.config.predict_epsilon:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = model_output

        # 3. Clip "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = jnp.clip(pred_original_sample, -1, 1)

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
        variance = 0
        if t > 0:
            key = random.split(key, num=1)
            noise = random.normal(key=key, shape=model_output.shape)
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
            return (pred_prev_sample, state)

284
        return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state)
285
286
287
288
289
290
291
292

    def add_noise(
        self,
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
293
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
294
        sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape)
295

296
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
297
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
298
        sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape)
299
300
301
302
303
304

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps