unet.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import copy
import math
from pathlib import Path

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23
from torch import nn
24
25
26
27
from torch.cuda.amp import GradScaler, autocast
from torch.optim import Adam
from torch.utils import data

Patrick von Platen's avatar
improve  
Patrick von Platen committed
28
from PIL import Image
29
30
from tqdm import tqdm

Patrick von Platen's avatar
Patrick von Platen committed
31
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
32
from ..modeling_utils import ModelMixin
33
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
34
from .resnet import Downsample, Upsample
Patrick von Platen's avatar
Patrick von Platen committed
35
from .attention2d import AttnBlock, AttentionBlock
36
37


Patrick von Platen's avatar
improve  
Patrick von Platen committed
38
39
40
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
41
42


Patrick von Platen's avatar
improve  
Patrick von Platen committed
43
44
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
45
46
47


class ResnetBlock(nn.Module):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
48
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
49
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#class AttnBlock(nn.Module):
#    def __init__(self, in_channels):
#        super().__init__()
#        self.in_channels = in_channels
#
#        self.norm = Normalize(in_channels)
#        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#
#    def forward(self, x):
#        h_ = x
#        h_ = self.norm(h_)
#        q = self.q(h_)
#        k = self.k(h_)
#        v = self.v(h_)
#
Patrick von Platen's avatar
improve  
Patrick von Platen committed
107
        # compute attention
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
112
113
114
115
#        b, c, h, w = q.shape
#        q = q.reshape(b, c, h * w)
#        q = q.permute(0, 2, 1)  # b,hw,c
#        k = k.reshape(b, c, h * w)  # b,c,hw
#        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
#        w_ = w_ * (int(c) ** (-0.5))
#        w_ = torch.nn.functional.softmax(w_, dim=2)
#
Patrick von Platen's avatar
improve  
Patrick von Platen committed
116
        # attend to values
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
123
124
#        v = v.reshape(b, c, h * w)
#        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
#        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
#        h_ = h_.reshape(b, c, h, w)
#
#        h_ = self.proj_out(h_)
#
#        return x + h_
125
126


Patrick von Platen's avatar
Patrick von Platen committed
127
class UNetModel(ModelMixin, ConfigMixin):
128
129
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
130
131
132
133
134
135
136
137
138
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
139
140
    ):
        super().__init__()
141
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
167
        )
168

Patrick von Platen's avatar
improve  
Patrick von Platen committed
169
170
171
172
173
174
175
176
177
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
Patrick von Platen's avatar
Patrick von Platen committed
178
            attn_2 = nn.ModuleList()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
179
180
181
182
183
184
185
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
186
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
187
188
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
189
190
#                    attn.append(AttnBlock(block_in))
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
191
192
193
            down = nn.Module()
            down.block = block
            down.attn = attn
Patrick von Platen's avatar
Patrick von Platen committed
194
            down.attn_2 = attn_2
Patrick von Platen's avatar
improve  
Patrick von Platen committed
195
            if i_level != self.num_resolutions - 1:
patil-suraj's avatar
patil-suraj committed
196
                down.downsample = Downsample(block_in, use_conv=resamp_with_conv, padding=0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
197
198
199
200
201
202
203
204
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
Patrick von Platen's avatar
Patrick von Platen committed
205
206
#        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
207
208
209
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
210

Patrick von Platen's avatar
improve  
Patrick von Platen committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
                    ResnetBlock(
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
Patrick von Platen's avatar
Patrick von Platen committed
231
232
#                    attn.append(AttnBlock(block_in))
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
233
234
235
236
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
patil-suraj's avatar
patil-suraj committed
237
                up.upsample = Upsample(block_in, use_conv=resamp_with_conv)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
238
239
240
241
242
243
244
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

patil-suraj's avatar
patil-suraj committed
245
    def forward(self, x, timesteps):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
246
247
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
248
249
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
250
251

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
252
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
253
254
255
256
257
258
259
260
261
262
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
#                    self.down[i_level].attn_2[i_block].set_weights(self.down[i_level].attn[i_block])
#                    h = self.down[i_level].attn_2[i_block](h)

Patrick von Platen's avatar
improve  
Patrick von Platen committed
266
                    h = self.down[i_level].attn[i_block](h)
Patrick von Platen's avatar
Patrick von Platen committed
267
#                    print("Result", (h - h_2).abs().sum())
Patrick von Platen's avatar
improve  
Patrick von Platen committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h