hub_utils.py 5.13 KB
Newer Older
anton-l's avatar
anton-l committed
1
2
import os
import shutil
anton-l's avatar
anton-l committed
3
4
5
6
from pathlib import Path
from typing import Optional

import yaml
anton-l's avatar
anton-l committed
7
from diffusers import DiffusionPipeline
anton-l's avatar
anton-l committed
8
9
10
from huggingface_hub import HfFolder, Repository, whoami

from .utils import logging
anton-l's avatar
anton-l committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


logger = logging.get_logger(__name__)


AUTOGENERATED_TRAINER_COMMENT = """
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
"""


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


def init_git_repo(args, at_init: bool = False):
    """
    Initializes a git repo in `args.hub_model_id`.
    Args:
        at_init (`bool`, *optional*, defaults to `False`):
            Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is
            `True` and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped
            out.
    """
    if args.local_rank not in [-1, 0]:
        return
    use_auth_token = True if args.hub_token is None else args.hub_token
    if args.hub_model_id is None:
        repo_name = Path(args.output_dir).absolute().name
    else:
        repo_name = args.hub_model_id
    if "/" not in repo_name:
        repo_name = get_full_repo_name(repo_name, token=args.hub_token)

    try:
        repo = Repository(
            args.output_dir,
            clone_from=repo_name,
            use_auth_token=use_auth_token,
            private=args.hub_private_repo,
        )
    except EnvironmentError:
        if args.overwrite_output_dir and at_init:
            # Try again after wiping output_dir
            shutil.rmtree(args.output_dir)
            repo = Repository(
                args.output_dir,
                clone_from=repo_name,
                use_auth_token=use_auth_token,
            )
        else:
            raise

    repo.git_pull()

    # By default, ignore the checkpoint folders
anton-l's avatar
anton-l committed
73
    if not os.path.exists(os.path.join(args.output_dir, ".gitignore")) and args.hub_strategy != "all_checkpoints":
anton-l's avatar
anton-l committed
74
75
76
77
78
79
        with open(os.path.join(args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
            writer.writelines(["checkpoint-*/"])

    return repo


anton-l's avatar
anton-l committed
80
81
82
83
84
85
86
87
def push_to_hub(
    args,
    pipeline: DiffusionPipeline,
    repo: Repository,
    commit_message: Optional[str] = "End of training",
    blocking: bool = True,
    **kwargs,
) -> str:
anton-l's avatar
anton-l committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    """
    Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
    Parameters:
        commit_message (`str`, *optional*, defaults to `"End of training"`):
            Message to commit while pushing.
        blocking (`bool`, *optional*, defaults to `True`):
            Whether the function should return only when the `git push` has finished.
        kwargs:
            Additional keyword arguments passed along to [`create_model_card`].
    Returns:
        The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of
        the commit and an object to track the progress of the commit if `blocking=True`
    """

    if args.hub_model_id is None:
        model_name = Path(args.output_dir).name
    else:
        model_name = args.hub_model_id.split("/")[-1]

    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)
    logger.info(f"Saving pipeline checkpoint to {output_dir}")
    pipeline.save_pretrained(output_dir)

    # Only push from one node.
    if args.local_rank not in [-1, 0]:
        return

    # Cancel any async push in progress if blocking=True. The commits will all be pushed together.
anton-l's avatar
anton-l committed
117
118
119
120
121
122
    if (
        blocking
        and len(repo.command_queue) > 0
        and repo.command_queue[-1] is not None
        and not repo.command_queue[-1].is_done
    ):
anton-l's avatar
anton-l committed
123
124
        repo.command_queue[-1]._process.kill()

anton-l's avatar
anton-l committed
125
    git_head_commit_url = repo.push_to_hub(commit_message=commit_message, blocking=blocking, auto_lfs_prune=True)
anton-l's avatar
anton-l committed
126
127
128
    # push separately the model card to be independent from the rest of the model
    create_model_card(args, model_name=model_name)
    try:
anton-l's avatar
anton-l committed
129
        repo.push_to_hub(commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True)
anton-l's avatar
anton-l committed
130
131
132
133
134
135
136
137
138
139
140
141
142
    except EnvironmentError as exc:
        logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")

    return git_head_commit_url


def create_model_card(args, model_name):
    if args.local_rank not in [-1, 0]:
        return

    # TODO: replace this placeholder model card generation
    model_card = ""

anton-l's avatar
anton-l committed
143
    metadata = {"license": "apache-2.0", "tags": ["pytorch", "diffusers"]}
anton-l's avatar
anton-l committed
144
145
146
147
148
149
150
151
152
153
    metadata = yaml.dump(metadata, sort_keys=False)
    if len(metadata) > 0:
        model_card = f"---\n{metadata}---\n"

    model_card += AUTOGENERATED_TRAINER_COMMENT

    model_card += f"\n# {model_name}\n\n"

    with open(os.path.join(args.output_dir, "README.md"), "w") as f:
        f.write(model_card)