hub_utils.py 5.15 KB
Newer Older
anton-l's avatar
anton-l committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from typing import Optional
from .utils import logging
from huggingface_hub import HfFolder, Repository, whoami
import yaml
import os
from pathlib import Path
import shutil
from diffusers import DiffusionPipeline


logger = logging.get_logger(__name__)


AUTOGENERATED_TRAINER_COMMENT = """
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
"""


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


def init_git_repo(args, at_init: bool = False):
    """
    Initializes a git repo in `args.hub_model_id`.
    Args:
        at_init (`bool`, *optional*, defaults to `False`):
            Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is
            `True` and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped
            out.
    """
    if args.local_rank not in [-1, 0]:
        return
    use_auth_token = True if args.hub_token is None else args.hub_token
    if args.hub_model_id is None:
        repo_name = Path(args.output_dir).absolute().name
    else:
        repo_name = args.hub_model_id
    if "/" not in repo_name:
        repo_name = get_full_repo_name(repo_name, token=args.hub_token)

    try:
        repo = Repository(
            args.output_dir,
            clone_from=repo_name,
            use_auth_token=use_auth_token,
            private=args.hub_private_repo,
        )
    except EnvironmentError:
        if args.overwrite_output_dir and at_init:
            # Try again after wiping output_dir
            shutil.rmtree(args.output_dir)
            repo = Repository(
                args.output_dir,
                clone_from=repo_name,
                use_auth_token=use_auth_token,
            )
        else:
            raise

    repo.git_pull()

    # By default, ignore the checkpoint folders
    if (
            not os.path.exists(os.path.join(args.output_dir, ".gitignore"))
            and args.hub_strategy != "all_checkpoints"
    ):
        with open(os.path.join(args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
            writer.writelines(["checkpoint-*/"])

    return repo


def push_to_hub(args, pipeline: DiffusionPipeline, repo: Repository, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
    """
    Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
    Parameters:
        commit_message (`str`, *optional*, defaults to `"End of training"`):
            Message to commit while pushing.
        blocking (`bool`, *optional*, defaults to `True`):
            Whether the function should return only when the `git push` has finished.
        kwargs:
            Additional keyword arguments passed along to [`create_model_card`].
    Returns:
        The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of
        the commit and an object to track the progress of the commit if `blocking=True`
    """

    if args.hub_model_id is None:
        model_name = Path(args.output_dir).name
    else:
        model_name = args.hub_model_id.split("/")[-1]

    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)
    logger.info(f"Saving pipeline checkpoint to {output_dir}")
    pipeline.save_pretrained(output_dir)

    # Only push from one node.
    if args.local_rank not in [-1, 0]:
        return

    # Cancel any async push in progress if blocking=True. The commits will all be pushed together.
    if blocking and len(repo.command_queue) > 0 and repo.command_queue[-1] is not None and not repo.command_queue[-1].is_done:
        repo.command_queue[-1]._process.kill()

    git_head_commit_url = repo.push_to_hub(
        commit_message=commit_message, blocking=blocking, auto_lfs_prune=True
    )
    # push separately the model card to be independent from the rest of the model
    create_model_card(args, model_name=model_name)
    try:
        repo.push_to_hub(
            commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True
        )
    except EnvironmentError as exc:
        logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")

    return git_head_commit_url


def create_model_card(args, model_name):
    if args.local_rank not in [-1, 0]:
        return

    # TODO: replace this placeholder model card generation
    model_card = ""

    metadata = {
        "license": "apache-2.0",
        "tags": ["pytorch", "diffusers"]
    }
    metadata = yaml.dump(metadata, sort_keys=False)
    if len(metadata) > 0:
        model_card = f"---\n{metadata}---\n"

    model_card += AUTOGENERATED_TRAINER_COMMENT

    model_card += f"\n# {model_name}\n\n"

    with open(os.path.join(args.output_dir, "README.md"), "w") as f:
        f.write(model_card)