test_stable_diffusion.py 46.9 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
26
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
27
28
29
30

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
32
33
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
34
35
36
37
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
38
    logging,
39
)
40
from diffusers.models.attention_processor import AttnProcessor
41
42
43
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
    load_numpy,
    nightly,
46
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
47
    require_python39_or_higher,
48
49
50
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
51
52
    slow,
    torch_device,
53
)
54

55
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
56
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
57

58

59
60
61
62
63
64
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
65
    try:
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
92
93


94
95
96
class StableDiffusionPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
97
    pipeline_class = StableDiffusionPipeline
98
99
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
100
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
101
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
102

103
    def get_dummy_components(self):
104
        torch.manual_seed(0)
105
        unet = UNet2DConditionModel(
106
107
108
109
110
111
112
113
114
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
115
116
117
118
119
120
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
121
122
        )
        torch.manual_seed(0)
123
        vae = AutoencoderKL(
124
125
126
127
128
129
130
131
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
132
        text_encoder_config = CLIPTextConfig(
133
134
135
136
137
138
139
140
141
142
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
143
144
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
170
171
172
173

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

174
175
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
176
        sd_pipe = sd_pipe.to(torch_device)
177
178
        sd_pipe.set_progress_bar_config(disable=None)

179
180
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
181
182
183
184
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

185
        assert image.shape == (1, 64, 64, 3)
186
        expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
187
188
189

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

305
306
307
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

308
309
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
310
311
312
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

313
314
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
315
316
317
318
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

319
320
        assert image.shape == (1, 136, 136, 3)
        expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
321
322
323
324
325

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
326
327
328
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
329
330
331
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

332
333
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
334
335
336
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

337
        assert image.shape == (1, 64, 64, 3)
338
        expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994])
339

340
341
342
343
344
345
346
347
348
349
350
351
352
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

353
354
355
356
357
358
359
360
361
362
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

363
364
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
365

366
367
368
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
369
370
371
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

372
373
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
374
375
376
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

377
        assert image.shape == (1, 64, 64, 3)
378
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
379

hlky's avatar
hlky committed
380
381
382
383
384
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

385
386
387
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
388
389
390
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

391
392
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
393
394
395
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

396
        assert image.shape == (1, 64, 64, 3)
397
        expected_slice = np.array([0.4872, 0.5444, 0.4846, 0.5003, 0.5549, 0.4850, 0.5189, 0.4941, 0.5067])
398

hlky's avatar
hlky committed
399
400
401
402
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
403

404
405
406
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
407
408
409
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

410
411
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
412
413
414
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

415
        assert image.shape == (1, 64, 64, 3)
416
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
417

418
419
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

420
421
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
422
423
424
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
425
426
427
428
429
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

430
431
432
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
433
434
435

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
436
437
438
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
439
440
441
442

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

466
467
468
469
470
471
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

472
473
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
474
475
476
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
477
478
479
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

480
        inputs = self.get_dummy_inputs(device)
481
        negative_prompt = "french fries"
482
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
483
484
485
486

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

487
        assert image.shape == (1, 64, 64, 3)
488
        expected_slice = np.array([0.5114, 0.5706, 0.4772, 0.5028, 0.5637, 0.4732, 0.5169, 0.4881, 0.4977])
489

490
491
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

492
    def test_stable_diffusion_long_prompt(self):
493
494
495
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
496
497
498
499
500
501
502
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
503
        logger.setLevel(logging.WARNING)
504
505
506

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
507
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
508
509
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
510
511
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
512

513
514
515
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

516
517
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
518
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
519
520
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
521
522
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
523

524
525
526
527
528
529
530
531
532
533
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

534
535
536
537
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

538
    def test_stable_diffusion_height_width_opt(self):
539
540
541
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
542
543
544
545
546
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

547
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
548
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
549
        assert image_shape == (64, 64)
550

551
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
552
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
553
        assert image_shape == (96, 96)
554
555
556

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
557
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
558
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
559
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
560
        assert image_shape == (192, 192)
561

562
563
564
565
566
567
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

568
569

@slow
570
@require_torch_gpu
571
class StableDiffusionPipelineSlowTests(unittest.TestCase):
572
    def setUp(self):
573
574
575
        gc.collect()
        torch.cuda.empty_cache()

576
577
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
578
579
580
581
582
583
584
585
586
587
588
589
590
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
591
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
592
593
594
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

595
596
597
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
598

599
600
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592])
601
        assert np.abs(image_slice - expected_slice).max() < 3e-3
602

603
604
605
606
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
607

608
609
610
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
611

612
613
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748])
614
        assert np.abs(image_slice - expected_slice).max() < 3e-3
615

616
617
618
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
619
620
621
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

622
623
624
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
625

626
627
628
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
629

630
631
632
633
634
635
636
637
638
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
639
640

        assert image.shape == (1, 512, 512, 3)
641
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
642
        assert np.abs(image_slice - expected_slice).max() < 3e-3
643

644
645
646
647
648
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
649

650
651
652
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
653
654

        assert image.shape == (1, 512, 512, 3)
655
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
656
        assert np.abs(image_slice - expected_slice).max() < 3e-3
657

658
    def test_stable_diffusion_attention_slicing(self):
659
        torch.cuda.reset_peak_memory_stats()
660
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
661
        pipe.unet.set_default_attn_processor()
662
        pipe = pipe.to(torch_device)
663
664
        pipe.set_progress_bar_config(disable=None)

665
        # enable attention slicing
666
        pipe.enable_attention_slicing()
667
668
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
669
670
671
672
673
674

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

675
        # disable slicing
676
        pipe.disable_attention_slicing()
677
        pipe.unet.set_default_attn_processor()
678
679
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
680
681
682
683

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
684
685
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
686

687
688
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
689
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
690
        pipe = pipe.to(torch_device)
691
692
693
694
695
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
696
697
698
699
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
700
701
702
703
704
705
706
707

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
708
709
710
711
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
712
713
714
715
716

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
717
718
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
719

720
721
722
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
723
724
725
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
        )
726
727
728
729
730
731
732
733
734
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
735
736
737
738
739
740
741
742
743
744
745
746
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image_chunked = output_chunked.images
747
748
749
750
751

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
752
753
754
755
756
757
758
759
760
761
762
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image = output.images
763

764
        assert mem_bytes < 1e10
765
766
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
767

768
    def test_stable_diffusion_fp16_vs_autocast(self):
769
770
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
771
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
772
        pipe = pipe.to(torch_device)
773
774
        pipe.set_progress_bar_config(disable=None)

775
776
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
777
778

        with torch.autocast(torch_device):
779
780
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
781
782

        # Make sure results are close enough
783
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
784
785
786
787
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

788
    def test_stable_diffusion_intermediate_state(self):
789
790
        number_of_steps = 0

791
792
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
793
794
            nonlocal number_of_steps
            number_of_steps += 1
795
            if step == 1:
796
797
798
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
799
800
801
802
803
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
804
            elif step == 2:
805
806
807
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
808
809
810
811
812
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
813

814
        callback_fn.has_been_called = False
815

816
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
817
818
819
820
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

821
822
823
824
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
825

826
    def test_stable_diffusion_low_cpu_mem_usage(self):
827
828
829
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
830
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
831
832
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
833
834

        start_time = time.time()
835
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
836
        normal_load_time = time.time() - start_time
837

838
        assert 2 * low_cpu_mem_usage_time < normal_load_time
839

840
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
841
842
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
843
        torch.cuda.reset_peak_memory_stats()
844

845
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
846
847
848
849
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
850

851
852
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
853
854

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
855
856
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
857

858
859
860
861
862
863
864
865
866
867
868
869
870
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
871
        pipe.unet.set_default_attn_processor()
872
873
874
875
876
877
878
879
880
881
882
883
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
884
        pipe.unet.set_default_attn_processor()
885
886
887
888
889
890
891

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
892
893
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

894
895
896
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

897
898
899
900
901
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
902
903
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
904
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
905
906
907
908
909
910
911
912
913
914
915
916
917
918
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
942
        assert max_diff < 8e-1
943

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

Dhruv Nair's avatar
Dhruv Nair committed
994
    @require_python39_or_higher
995
    @require_torch_2
996
    def test_stable_diffusion_compile(self):
997
998
999
1000
1001
1002
1003
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1004

1005

1lint's avatar
1lint committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1021
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")

Patrick von Platen's avatar
Patrick von Platen committed
1032
        pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

Patrick von Platen's avatar
Patrick von Platen committed
1043
        pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
1lint's avatar
1lint committed
1044
1045
1046
1047
1048
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
1049
        image_ckpt = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1050
1051
1052
1053
1054
1055
1056

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
1057
        image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1058

1059
1060
1061
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())

        assert max_diff < 1e-3
1lint's avatar
1lint committed
1062
1063


1064
1065
1066
1067
1068
1069
1070
1071
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1072
1073
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1127
        assert max_diff < 3e-3
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3