"aten/cuda/cluster.cpp" did not exist on "6b18f2d19ee08e1280d802e8bfba435539936fb1"
scheduling_lms_discrete.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import warnings
15
from dataclasses import dataclass
16
from typing import Optional, Tuple, Union
17
18
19
20
21
22
23

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import BaseOutput, deprecate
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from .scheduling_utils import SchedulerMixin


@dataclass
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
44
45
46


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
47
48
49
50
51
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

52
53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
55
    [`~ConfigMixin.from_config`] functions.
56

57
58
59
60
61
62
63
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
64
65
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
66
67
68

    """

69
70
71
    @register_to_config
    def __init__(
        self,
72
73
74
75
76
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
77
        **kwargs,
78
    ):
79
80
81
82
83
84
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
85

86
        if trained_betas is not None:
87
            self.betas = torch.from_numpy(trained_betas)
88
        elif beta_schedule == "linear":
89
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
90
91
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
92
93
94
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
95
96
97
98
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
99
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
100

101
102
103
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
104

105
106
107
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

108
109
        # setable values
        self.num_inference_steps = None
110
111
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
112
        self.derivatives = []
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
135
136
137

    def get_lms_coefficient(self, order, t, current_order):
        """
138
139
140
141
142
143
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

158
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
159
160
161
162
163
164
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
165
166
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
167
        """
168
169
        self.num_inference_steps = num_inference_steps

170
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
171
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
172
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
173
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
174
175
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
        self.timesteps = torch.from_numpy(timesteps).to(device=device)
176
177
178
179
180

        self.derivatives = []

    def step(
        self,
181
        model_output: torch.FloatTensor,
182
        timestep: Union[float, torch.FloatTensor],
183
        sample: torch.FloatTensor,
184
        order: int = 4,
185
        return_dict: bool = True,
186
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
187
188
189
190
191
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
192
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
193
            timestep (`float`): current timestep in the diffusion chain.
194
            sample (`torch.FloatTensor`):
195
196
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
197
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
198
199

        Returns:
200
201
202
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
203
204

        """
205
206
207
208
209
210
211
212
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
213
214
215
216
217
        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
218
219
220
221
222
223
224
            deprecate(
                "timestep as an index",
                "0.5.0",
                "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                " `LMSDiscreteScheduler.step()` will not be supported in future versions. Make sure to pass"
                " one of the `scheduler.timesteps` as a timestep.",
                standard_warn=False,
225
226
227
228
            )
            step_index = timestep
        else:
            step_index = (self.timesteps == timestep).nonzero().item()
229
        sigma = self.sigmas[step_index]
230
231
232
233
234
235
236
237
238
239
240

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
241
242
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
243
244
245
246
247
248

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

249
250
251
        if not return_dict:
            return (prev_sample,)

252
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
253

254
255
    def add_noise(
        self,
256
257
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
258
        timesteps: torch.FloatTensor,
259
260
    ) -> torch.FloatTensor:
        sigmas = self.sigmas.to(original_samples.device)
261
        schedule_timesteps = self.timesteps.to(original_samples.device)
262
        timesteps = timesteps.to(original_samples.device)
263
        if isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor):
264
265
266
267
268
269
270
            deprecate(
                "timesteps as indices",
                "0.5.0",
                "Passing integer indices  (e.g. from `enumerate(timesteps)`) as timesteps to"
                " `LMSDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to"
                " pass values from `scheduler.timesteps` as timesteps.",
                standard_warn=False,
271
272
273
274
            )
            step_indices = timesteps
        else:
            step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
275

276
        sigma = sigmas[step_indices].flatten()
277
278
279
280
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
281
282
283
284
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps