test_cycle_diffusion.py 9.58 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23

24
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
25
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
26
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
27

28
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
29
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
30
31
32


torch.backends.cuda.matmul.allow_tf32 = False
33
torch.use_deterministic_algorithms(True)
34
35


36
class CycleDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
37
    pipeline_class = CycleDiffusionPipeline
38
39
40
41
42
43
44
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
45
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"})
46
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
47

48
    def get_dummy_components(self):
49
        torch.manual_seed(0)
50
        unet = UNet2DConditionModel(
51
52
53
54
55
56
57
58
59
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
60
61
62
63
64
65
66
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            set_alpha_to_one=False,
67
68
        )
        torch.manual_seed(0)
69
        vae = AutoencoderKL(
70
71
72
73
74
75
76
77
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
78
        text_encoder_config = CLIPTextConfig(
79
80
81
82
83
84
85
86
87
88
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
89
90
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "An astronaut riding an elephant",
            "source_prompt": "An astronaut riding a horse",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "eta": 0.1,
            "strength": 0.8,
            "guidance_scale": 3,
            "source_guidance_scale": 1,
            "output_type": "numpy",
        }
        return inputs
122
123
124
125

    def test_stable_diffusion_cycle(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

126
127
128
129
        components = self.get_dummy_components()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
130

131
132
        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
133
134
135
136
137
138
139
140
141
142
143
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_cycle_fp16(self):
144
145
146
147
148
149
150
151
152
153
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)
154
155
156
157
158
159
160
161
162
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_cycle_diffusion_pipeline_fp16(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
204
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
205
206
207
208
209
210
211
212
213
214
215
        pipe = CycleDiffusionPipeline.from_pretrained(
            model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
        )

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

216
        generator = torch.manual_seed(0)
217
218
219
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
220
            image=init_image,
221
222
223
224
225
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
226
            generator=generator,
227
228
229
230
231
            output_type="np",
        )
        image = output.images

        # the values aren't exactly equal, but the images look the same visually
Patrick von Platen's avatar
Patrick von Platen committed
232
        assert np.abs(image - expected_image).max() < 5e-1
233
234
235
236
237
238
239
240
241
242
243
244

    def test_cycle_diffusion_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
245
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
246
247
248
249
250
251
252
253
254
        pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

255
        generator = torch.manual_seed(0)
256
257
258
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
259
            image=init_image,
260
261
262
263
264
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
265
            generator=generator,
266
267
268
269
            output_type="np",
        )
        image = output.images

270
        assert np.abs(image - expected_image).max() < 2e-2