test_cycle_diffusion.py 9.39 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23

24
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
25
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
26
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
27

28
29
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
30
31
32
33
34
35


torch.backends.cuda.matmul.allow_tf32 = False


class CycleDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
36
    pipeline_class = CycleDiffusionPipeline
37
38
39
40
41
42
43
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
44
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"})
45

46
    def get_dummy_components(self):
47
        torch.manual_seed(0)
48
        unet = UNet2DConditionModel(
49
50
51
52
53
54
55
56
57
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
58
59
60
61
62
63
64
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            set_alpha_to_one=False,
65
66
        )
        torch.manual_seed(0)
67
        vae = AutoencoderKL(
68
69
70
71
72
73
74
75
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
76
        text_encoder_config = CLIPTextConfig(
77
78
79
80
81
82
83
84
85
86
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
87
88
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "An astronaut riding an elephant",
            "source_prompt": "An astronaut riding a horse",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "eta": 0.1,
            "strength": 0.8,
            "guidance_scale": 3,
            "source_guidance_scale": 1,
            "output_type": "numpy",
        }
        return inputs
120
121
122
123

    def test_stable_diffusion_cycle(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

124
125
126
127
        components = self.get_dummy_components()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
128

129
130
        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
131
132
133
134
135
136
137
138
139
140
141
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_cycle_fp16(self):
142
143
144
145
146
147
148
149
150
151
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)
152
153
154
155
156
157
158
159
160
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_cycle_diffusion_pipeline_fp16(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
202
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
203
204
205
206
207
208
209
210
211
212
213
        pipe = CycleDiffusionPipeline.from_pretrained(
            model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
        )

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

214
        generator = torch.manual_seed(0)
215
216
217
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
218
            image=init_image,
219
220
221
222
223
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
224
            generator=generator,
225
226
227
228
229
            output_type="np",
        )
        image = output.images

        # the values aren't exactly equal, but the images look the same visually
Patrick von Platen's avatar
Patrick von Platen committed
230
        assert np.abs(image - expected_image).max() < 5e-1
231
232
233
234
235
236
237
238
239
240
241
242

    def test_cycle_diffusion_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
243
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
244
245
246
247
248
249
250
251
252
        pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

253
        generator = torch.manual_seed(0)
254
255
256
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
257
            image=init_image,
258
259
260
261
262
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
263
            generator=generator,
264
265
266
267
268
            output_type="np",
        )
        image = output.images

        assert np.abs(image - expected_image).max() < 1e-2