training_utils.py 25 KB
Newer Older
1
import contextlib
anton-l's avatar
anton-l committed
2
import copy
3
import gc
4
import math
5
import random
6
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
anton-l's avatar
anton-l committed
7

8
import numpy as np
anton-l's avatar
anton-l committed
9
10
import torch

11
from .models import UNet2DConditionModel
12
from .schedulers import SchedulerMixin
13
14
15
16
17
from .utils import (
    convert_state_dict_to_diffusers,
    convert_state_dict_to_peft,
    deprecate,
    is_peft_available,
Mengqing Cao's avatar
Mengqing Cao committed
18
    is_torch_npu_available,
YiYi Xu's avatar
YiYi Xu committed
19
    is_torchvision_available,
20
21
    is_transformers_available,
)
22
23
24
25


if is_transformers_available():
    import transformers
26

27
28
29
if is_peft_available():
    from peft import set_peft_model_state_dict

30
31
32
if is_torchvision_available():
    from torchvision import transforms

Mengqing Cao's avatar
Mengqing Cao committed
33
34
35
if is_torch_npu_available():
    import torch_npu  # noqa: F401

anton-l's avatar
anton-l committed
36

37
38
39
def set_seed(seed: int):
    """
    Args:
40
    Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
41
42
43
44
45
        seed (`int`): The seed to set.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
Mengqing Cao's avatar
Mengqing Cao committed
46
47
48
49
50
    if is_torch_npu_available():
        torch.npu.manual_seed_all(seed)
    else:
        torch.cuda.manual_seed_all(seed)
        # ^^ safe to call this function even if cuda is not available
51
52


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def compute_snr(noise_scheduler, timesteps):
    """
    Computes SNR as per
    https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = alphas_cumprod**0.5
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # Expand the tensors.
    # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
    sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
    alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

    sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
    sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

    # Compute SNR.
    snr = (alpha / sigma) ** 2
    return snr


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def resolve_interpolation_mode(interpolation_type: str):
    """
    Maps a string describing an interpolation function to the corresponding torchvision `InterpolationMode` enum. The
    full list of supported enums is documented at
    https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.functional.InterpolationMode.

    Args:
        interpolation_type (`str`):
            A string describing an interpolation method. Currently, `bilinear`, `bicubic`, `box`, `nearest`,
            `nearest_exact`, `hamming`, and `lanczos` are supported, corresponding to the supported interpolation modes
            in torchvision.

    Returns:
        `torchvision.transforms.InterpolationMode`: an `InterpolationMode` enum used by torchvision's `resize`
        transform.
    """
95
96
97
98
99
    if not is_torchvision_available():
        raise ImportError(
            "Please make sure to install `torchvision` to be able to use the `resolve_interpolation_mode()` function."
        )

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    if interpolation_type == "bilinear":
        interpolation_mode = transforms.InterpolationMode.BILINEAR
    elif interpolation_type == "bicubic":
        interpolation_mode = transforms.InterpolationMode.BICUBIC
    elif interpolation_type == "box":
        interpolation_mode = transforms.InterpolationMode.BOX
    elif interpolation_type == "nearest":
        interpolation_mode = transforms.InterpolationMode.NEAREST
    elif interpolation_type == "nearest_exact":
        interpolation_mode = transforms.InterpolationMode.NEAREST_EXACT
    elif interpolation_type == "hamming":
        interpolation_mode = transforms.InterpolationMode.HAMMING
    elif interpolation_type == "lanczos":
        interpolation_mode = transforms.InterpolationMode.LANCZOS
    else:
        raise ValueError(
            f"The given interpolation mode {interpolation_type} is not supported. Currently supported interpolation"
            f" modes are `bilinear`, `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
        )

    return interpolation_mode


123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def compute_dream_and_update_latents(
    unet: UNet2DConditionModel,
    noise_scheduler: SchedulerMixin,
    timesteps: torch.Tensor,
    noise: torch.Tensor,
    noisy_latents: torch.Tensor,
    target: torch.Tensor,
    encoder_hidden_states: torch.Tensor,
    dream_detail_preservation: float = 1.0,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
    """
    Implements "DREAM (Diffusion Rectification and Estimation-Adaptive Models)" from http://arxiv.org/abs/2312.00210.
    DREAM helps align training with sampling to help training be more efficient and accurate at the cost of an extra
    forward step without gradients.

    Args:
        `unet`: The state unet to use to make a prediction.
        `noise_scheduler`: The noise scheduler used to add noise for the given timestep.
        `timesteps`: The timesteps for the noise_scheduler to user.
        `noise`: A tensor of noise in the shape of noisy_latents.
        `noisy_latents`: Previously noise latents from the training loop.
        `target`: The ground-truth tensor to predict after eps is removed.
        `encoder_hidden_states`: Text embeddings from the text model.
        `dream_detail_preservation`: A float value that indicates detail preservation level.
          See reference.

    Returns:
        `tuple[torch.Tensor, torch.Tensor]`: Adjusted noisy_latents and target.
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod.to(timesteps.device)[timesteps, None, None, None]
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # The paper uses lambda = sqrt(1 - alpha) ** p, with p = 1 in their experiments.
    dream_lambda = sqrt_one_minus_alphas_cumprod**dream_detail_preservation

    pred = None
    with torch.no_grad():
        pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

162
    _noisy_latents, _target = (None, None)
163
164
165
166
    if noise_scheduler.config.prediction_type == "epsilon":
        predicted_noise = pred
        delta_noise = (noise - predicted_noise).detach()
        delta_noise.mul_(dream_lambda)
167
168
        _noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
        _target = target.add(delta_noise)
169
170
171
172
173
    elif noise_scheduler.config.prediction_type == "v_prediction":
        raise NotImplementedError("DREAM has not been implemented for v-prediction")
    else:
        raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

174
    return _noisy_latents, _target
175
176


177
178
179
180
181
182
183
184
185
186
187
188
189
190
def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
    r"""
    Returns:
        A state dict containing just the LoRA parameters.
    """
    lora_state_dict = {}

    for name, module in unet.named_modules():
        if hasattr(module, "set_lora_layer"):
            lora_layer = getattr(module, "lora_layer")
            if lora_layer is not None:
                current_lora_layer_sd = lora_layer.state_dict()
                for lora_layer_matrix_name, lora_param in current_lora_layer_sd.items():
                    # The matrix name can either be "down" or "up".
191
                    lora_state_dict[f"{name}.lora.{lora_layer_matrix_name}"] = lora_param
192
193
194
195

    return lora_state_dict


196
197
198
199
200
201
202
203
204
205
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32):
    if not isinstance(model, list):
        model = [model]
    for m in model:
        for param in m.parameters():
            # only upcast trainable parameters into fp32
            if param.requires_grad:
                param.data = param.to(dtype)


206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def _set_state_dict_into_text_encoder(
    lora_state_dict: Dict[str, torch.Tensor], prefix: str, text_encoder: torch.nn.Module
):
    """
    Sets the `lora_state_dict` into `text_encoder` coming from `transformers`.

    Args:
        lora_state_dict: The state dictionary to be set.
        prefix: String identifier to retrieve the portion of the state dict that belongs to `text_encoder`.
        text_encoder: Where the `lora_state_dict` is to be set.
    """

    text_encoder_state_dict = {
        f'{k.replace(prefix, "")}': v for k, v in lora_state_dict.items() if k.startswith(prefix)
    }
    text_encoder_state_dict = convert_state_dict_to_peft(convert_state_dict_to_diffusers(text_encoder_state_dict))
    set_peft_model_state_dict(text_encoder, text_encoder_state_dict, adapter_name="default")


225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def compute_density_for_timestep_sampling(
    weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
    """Compute the density for sampling the timesteps when doing SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "logit_normal":
        # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
        u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
        u = torch.nn.functional.sigmoid(u)
    elif weighting_scheme == "mode":
        u = torch.rand(size=(batch_size,), device="cpu")
        u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
    else:
        u = torch.rand(size=(batch_size,), device="cpu")
    return u


def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
    """Computes loss weighting scheme for SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "sigma_sqrt":
        weighting = (sigmas**-2.0).float()
    elif weighting_scheme == "cosmap":
        bot = 1 - 2 * sigmas + 2 * sigmas**2
        weighting = 2 / (math.pi * bot)
    else:
        weighting = torch.ones_like(sigmas)
    return weighting


263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def clear_objs_and_retain_memory(objs: List[Any]):
    """Deletes `objs` and runs garbage collection. Then clears the cache of the available accelerator."""
    if len(objs) >= 1:
        for obj in objs:
            del obj

    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    elif torch.backends.mps.is_available():
        torch.mps.empty_cache()
    elif is_torch_npu_available():
        torch_npu.empty_cache()


279
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
anton-l's avatar
anton-l committed
280
281
282
283
284
285
286
class EMAModel:
    """
    Exponential Moving Average of models weights
    """

    def __init__(
        self,
287
288
289
290
291
292
293
        parameters: Iterable[torch.nn.Parameter],
        decay: float = 0.9999,
        min_decay: float = 0.0,
        update_after_step: int = 0,
        use_ema_warmup: bool = False,
        inv_gamma: Union[float, int] = 1.0,
        power: Union[float, int] = 2 / 3,
294
        foreach: bool = False,
295
296
        model_cls: Optional[Any] = None,
        model_config: Dict[str, Any] = None,
297
        **kwargs,
anton-l's avatar
anton-l committed
298
299
    ):
        """
300
301
302
303
304
305
306
307
308
        Args:
            parameters (Iterable[torch.nn.Parameter]): The parameters to track.
            decay (float): The decay factor for the exponential moving average.
            min_decay (float): The minimum decay factor for the exponential moving average.
            update_after_step (int): The number of steps to wait before starting to update the EMA weights.
            use_ema_warmup (bool): Whether to use EMA warmup.
            inv_gamma (float):
                Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
            power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
309
            foreach (bool): Use torch._foreach functions for updating shadow parameters. Should be faster.
310
311
312
            device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
                        weights will be stored on CPU.

anton-l's avatar
anton-l committed
313
        @crowsonkb's notes on EMA Warmup:
Patrick von Platen's avatar
Patrick von Platen committed
314
315
316
317
            If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
            to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
            gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
            at 215.4k steps).
anton-l's avatar
anton-l committed
318
319
        """

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

            # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
            use_ema_warmup = True

        if kwargs.get("max_value", None) is not None:
            deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead."
            deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False)
            decay = kwargs["max_value"]

        if kwargs.get("min_value", None) is not None:
            deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead."
            deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False)
            min_decay = kwargs["min_value"]

        parameters = list(parameters)
        self.shadow_params = [p.clone().detach() for p in parameters]

        if kwargs.get("device", None) is not None:
            deprecation_message = "The `device` argument is deprecated. Please use `to` instead."
            deprecate("device", "1.0.0", deprecation_message, standard_warn=False)
            self.to(device=kwargs["device"])

354
        self.temp_stored_params = None
anton-l's avatar
anton-l committed
355

356
357
        self.decay = decay
        self.min_decay = min_decay
anton-l's avatar
anton-l committed
358
        self.update_after_step = update_after_step
359
        self.use_ema_warmup = use_ema_warmup
anton-l's avatar
anton-l committed
360
361
        self.inv_gamma = inv_gamma
        self.power = power
362
        self.optimization_step = 0
363
        self.cur_decay_value = None  # set in `step()`
364
        self.foreach = foreach
anton-l's avatar
anton-l committed
365

366
367
368
369
        self.model_cls = model_cls
        self.model_config = model_config

    @classmethod
370
    def from_pretrained(cls, path, model_cls, foreach=False) -> "EMAModel":
371
372
373
        _, ema_kwargs = model_cls.load_config(path, return_unused_kwargs=True)
        model = model_cls.from_pretrained(path)

374
        ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config, foreach=foreach)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

        ema_model.load_state_dict(ema_kwargs)
        return ema_model

    def save_pretrained(self, path):
        if self.model_cls is None:
            raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")

        if self.model_config is None:
            raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")

        model = self.model_cls.from_config(self.model_config)
        state_dict = self.state_dict()
        state_dict.pop("shadow_params", None)

        model.register_to_config(**state_dict)
        self.copy_to(model.parameters())
        model.save_pretrained(path)

394
    def get_decay(self, optimization_step: int) -> float:
anton-l's avatar
anton-l committed
395
396
397
398
399
400
401
402
        """
        Compute the decay factor for the exponential moving average.
        """
        step = max(0, optimization_step - self.update_after_step - 1)

        if step <= 0:
            return 0.0

403
404
405
406
407
408
409
410
411
        if self.use_ema_warmup:
            cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
        else:
            cur_decay_value = (1 + step) / (10 + step)

        cur_decay_value = min(cur_decay_value, self.decay)
        # make sure decay is not smaller than min_decay
        cur_decay_value = max(cur_decay_value, self.min_decay)
        return cur_decay_value
anton-l's avatar
anton-l committed
412
413

    @torch.no_grad()
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    def step(self, parameters: Iterable[torch.nn.Parameter]):
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

        parameters = list(parameters)

        self.optimization_step += 1

        # Compute the decay factor for the exponential moving average.
        decay = self.get_decay(self.optimization_step)
434
        self.cur_decay_value = decay
435
436
        one_minus_decay = 1 - decay

437
        context_manager = contextlib.nullcontext
438
        if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
439
440
            import deepspeed

441
        if self.foreach:
442
            if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
443
                context_manager = deepspeed.zero.GatheredParameters(parameters, modifier_rank=None)
444
445

            with context_manager():
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
                params_grad = [param for param in parameters if param.requires_grad]
                s_params_grad = [
                    s_param for s_param, param in zip(self.shadow_params, parameters) if param.requires_grad
                ]

                if len(params_grad) < len(parameters):
                    torch._foreach_copy_(
                        [s_param for s_param, param in zip(self.shadow_params, parameters) if not param.requires_grad],
                        [param for param in parameters if not param.requires_grad],
                        non_blocking=True,
                    )

                torch._foreach_sub_(
                    s_params_grad, torch._foreach_sub(s_params_grad, params_grad), alpha=one_minus_decay
                )

        else:
            for s_param, param in zip(self.shadow_params, parameters):
464
                if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
465
466
467
468
469
470
471
                    context_manager = deepspeed.zero.GatheredParameters(param, modifier_rank=None)

                with context_manager():
                    if param.requires_grad:
                        s_param.sub_(one_minus_decay * (s_param - param))
                    else:
                        s_param.copy_(param)
anton-l's avatar
anton-l committed
472

473
474
475
    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current averaged parameters into given collection of parameters.
anton-l's avatar
anton-l committed
476

477
478
479
480
481
482
        Args:
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored moving averages. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
        parameters = list(parameters)
483
484
485
486
487
488
489
490
        if self.foreach:
            torch._foreach_copy_(
                [param.data for param in parameters],
                [s_param.to(param.device).data for s_param, param in zip(self.shadow_params, parameters)],
            )
        else:
            for s_param, param in zip(self.shadow_params, parameters):
                param.data.copy_(s_param.to(param.device).data)
491

492
493
494
495
496
497
498
499
500
    def pin_memory(self) -> None:
        r"""
        Move internal buffers of the ExponentialMovingAverage to pinned memory. Useful for non-blocking transfers for
        offloading EMA params to the host.
        """

        self.shadow_params = [p.pin_memory() for p in self.shadow_params]

    def to(self, device=None, dtype=None, non_blocking=False) -> None:
501
502
503
504
505
506
507
        r"""Move internal buffers of the ExponentialMovingAverage to `device`.

        Args:
            device: like `device` argument to `torch.Tensor.to`
        """
        # .to() on the tensors handles None correctly
        self.shadow_params = [
508
509
510
            p.to(device=device, dtype=dtype, non_blocking=non_blocking)
            if p.is_floating_point()
            else p.to(device=device, non_blocking=non_blocking)
511
512
513
514
515
516
517
518
519
520
521
522
523
            for p in self.shadow_params
        ]

    def state_dict(self) -> dict:
        r"""
        Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
        checkpointing to save the ema state dict.
        """
        # Following PyTorch conventions, references to tensors are returned:
        # "returns a reference to the state and not its copy!" -
        # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
        return {
            "decay": self.decay,
524
            "min_decay": self.min_decay,
525
526
527
528
529
530
531
532
            "optimization_step": self.optimization_step,
            "update_after_step": self.update_after_step,
            "use_ema_warmup": self.use_ema_warmup,
            "inv_gamma": self.inv_gamma,
            "power": self.power,
            "shadow_params": self.shadow_params,
        }

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        r"""
        Args:
        Save the current parameters for restoring later.
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                temporarily stored.
        """
        self.temp_stored_params = [param.detach().cpu().clone() for param in parameters]

    def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        r"""
        Args:
        Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without:
        affecting the original optimization process. Store the parameters before the `copy_to()` method. After
        validation (or model saving), use this to restore the former parameters.
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored parameters. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
        if self.temp_stored_params is None:
            raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`")
554
555
556
557
558
559
560
        if self.foreach:
            torch._foreach_copy_(
                [param.data for param in parameters], [c_param.data for c_param in self.temp_stored_params]
            )
        else:
            for c_param, param in zip(self.temp_stored_params, parameters):
                param.data.copy_(c_param.data)
561
562
563
564

        # Better memory-wise.
        self.temp_stored_params = None

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    def load_state_dict(self, state_dict: dict) -> None:
        r"""
        Args:
        Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
        ema state dict.
            state_dict (dict): EMA state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # deepcopy, to be consistent with module API
        state_dict = copy.deepcopy(state_dict)

        self.decay = state_dict.get("decay", self.decay)
        if self.decay < 0.0 or self.decay > 1.0:
            raise ValueError("Decay must be between 0 and 1")

        self.min_decay = state_dict.get("min_decay", self.min_decay)
        if not isinstance(self.min_decay, float):
            raise ValueError("Invalid min_decay")

        self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
        if not isinstance(self.optimization_step, int):
            raise ValueError("Invalid optimization_step")

        self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
        if not isinstance(self.update_after_step, int):
            raise ValueError("Invalid update_after_step")

        self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
        if not isinstance(self.use_ema_warmup, bool):
            raise ValueError("Invalid use_ema_warmup")

        self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
        if not isinstance(self.inv_gamma, (float, int)):
            raise ValueError("Invalid inv_gamma")

600
        self.power = state_dict.get("power", self.power)
601
602
603
        if not isinstance(self.power, (float, int)):
            raise ValueError("Invalid power")

604
605
606
607
608
609
610
        shadow_params = state_dict.get("shadow_params", None)
        if shadow_params is not None:
            self.shadow_params = shadow_params
            if not isinstance(self.shadow_params, list):
                raise ValueError("shadow_params must be a list")
            if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
                raise ValueError("shadow_params must all be Tensors")