training_utils.py 21 KB
Newer Older
1
import contextlib
anton-l's avatar
anton-l committed
2
import copy
3
import random
4
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
anton-l's avatar
anton-l committed
5

6
import numpy as np
anton-l's avatar
anton-l committed
7
8
import torch

9
from .models import UNet2DConditionModel
10
from .schedulers import SchedulerMixin
11
12
13
14
15
from .utils import (
    convert_state_dict_to_diffusers,
    convert_state_dict_to_peft,
    deprecate,
    is_peft_available,
Mengqing Cao's avatar
Mengqing Cao committed
16
    is_torch_npu_available,
YiYi Xu's avatar
YiYi Xu committed
17
    is_torchvision_available,
18
19
    is_transformers_available,
)
20
21
22
23


if is_transformers_available():
    import transformers
24

25
26
27
if is_peft_available():
    from peft import set_peft_model_state_dict

28
29
30
if is_torchvision_available():
    from torchvision import transforms

Mengqing Cao's avatar
Mengqing Cao committed
31
32
33
if is_torch_npu_available():
    import torch_npu  # noqa: F401

anton-l's avatar
anton-l committed
34

35
36
37
def set_seed(seed: int):
    """
    Args:
38
    Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
39
40
41
42
43
        seed (`int`): The seed to set.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
Mengqing Cao's avatar
Mengqing Cao committed
44
45
46
47
48
    if is_torch_npu_available():
        torch.npu.manual_seed_all(seed)
    else:
        torch.cuda.manual_seed_all(seed)
        # ^^ safe to call this function even if cuda is not available
49
50


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def compute_snr(noise_scheduler, timesteps):
    """
    Computes SNR as per
    https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = alphas_cumprod**0.5
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # Expand the tensors.
    # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
    sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
    alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

    sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
    sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

    # Compute SNR.
    snr = (alpha / sigma) ** 2
    return snr


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def resolve_interpolation_mode(interpolation_type: str):
    """
    Maps a string describing an interpolation function to the corresponding torchvision `InterpolationMode` enum. The
    full list of supported enums is documented at
    https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.functional.InterpolationMode.

    Args:
        interpolation_type (`str`):
            A string describing an interpolation method. Currently, `bilinear`, `bicubic`, `box`, `nearest`,
            `nearest_exact`, `hamming`, and `lanczos` are supported, corresponding to the supported interpolation modes
            in torchvision.

    Returns:
        `torchvision.transforms.InterpolationMode`: an `InterpolationMode` enum used by torchvision's `resize`
        transform.
    """
93
94
95
96
97
    if not is_torchvision_available():
        raise ImportError(
            "Please make sure to install `torchvision` to be able to use the `resolve_interpolation_mode()` function."
        )

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    if interpolation_type == "bilinear":
        interpolation_mode = transforms.InterpolationMode.BILINEAR
    elif interpolation_type == "bicubic":
        interpolation_mode = transforms.InterpolationMode.BICUBIC
    elif interpolation_type == "box":
        interpolation_mode = transforms.InterpolationMode.BOX
    elif interpolation_type == "nearest":
        interpolation_mode = transforms.InterpolationMode.NEAREST
    elif interpolation_type == "nearest_exact":
        interpolation_mode = transforms.InterpolationMode.NEAREST_EXACT
    elif interpolation_type == "hamming":
        interpolation_mode = transforms.InterpolationMode.HAMMING
    elif interpolation_type == "lanczos":
        interpolation_mode = transforms.InterpolationMode.LANCZOS
    else:
        raise ValueError(
            f"The given interpolation mode {interpolation_type} is not supported. Currently supported interpolation"
            f" modes are `bilinear`, `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
        )

    return interpolation_mode


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def compute_dream_and_update_latents(
    unet: UNet2DConditionModel,
    noise_scheduler: SchedulerMixin,
    timesteps: torch.Tensor,
    noise: torch.Tensor,
    noisy_latents: torch.Tensor,
    target: torch.Tensor,
    encoder_hidden_states: torch.Tensor,
    dream_detail_preservation: float = 1.0,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
    """
    Implements "DREAM (Diffusion Rectification and Estimation-Adaptive Models)" from http://arxiv.org/abs/2312.00210.
    DREAM helps align training with sampling to help training be more efficient and accurate at the cost of an extra
    forward step without gradients.

    Args:
        `unet`: The state unet to use to make a prediction.
        `noise_scheduler`: The noise scheduler used to add noise for the given timestep.
        `timesteps`: The timesteps for the noise_scheduler to user.
        `noise`: A tensor of noise in the shape of noisy_latents.
        `noisy_latents`: Previously noise latents from the training loop.
        `target`: The ground-truth tensor to predict after eps is removed.
        `encoder_hidden_states`: Text embeddings from the text model.
        `dream_detail_preservation`: A float value that indicates detail preservation level.
          See reference.

    Returns:
        `tuple[torch.Tensor, torch.Tensor]`: Adjusted noisy_latents and target.
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod.to(timesteps.device)[timesteps, None, None, None]
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # The paper uses lambda = sqrt(1 - alpha) ** p, with p = 1 in their experiments.
    dream_lambda = sqrt_one_minus_alphas_cumprod**dream_detail_preservation

    pred = None
    with torch.no_grad():
        pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

160
    _noisy_latents, _target = (None, None)
161
162
163
164
    if noise_scheduler.config.prediction_type == "epsilon":
        predicted_noise = pred
        delta_noise = (noise - predicted_noise).detach()
        delta_noise.mul_(dream_lambda)
165
166
        _noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
        _target = target.add(delta_noise)
167
168
169
170
171
    elif noise_scheduler.config.prediction_type == "v_prediction":
        raise NotImplementedError("DREAM has not been implemented for v-prediction")
    else:
        raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

172
    return _noisy_latents, _target
173
174


175
176
177
178
179
180
181
182
183
184
185
186
187
188
def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
    r"""
    Returns:
        A state dict containing just the LoRA parameters.
    """
    lora_state_dict = {}

    for name, module in unet.named_modules():
        if hasattr(module, "set_lora_layer"):
            lora_layer = getattr(module, "lora_layer")
            if lora_layer is not None:
                current_lora_layer_sd = lora_layer.state_dict()
                for lora_layer_matrix_name, lora_param in current_lora_layer_sd.items():
                    # The matrix name can either be "down" or "up".
189
                    lora_state_dict[f"{name}.lora.{lora_layer_matrix_name}"] = lora_param
190
191
192
193

    return lora_state_dict


194
195
196
197
198
199
200
201
202
203
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32):
    if not isinstance(model, list):
        model = [model]
    for m in model:
        for param in m.parameters():
            # only upcast trainable parameters into fp32
            if param.requires_grad:
                param.data = param.to(dtype)


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def _set_state_dict_into_text_encoder(
    lora_state_dict: Dict[str, torch.Tensor], prefix: str, text_encoder: torch.nn.Module
):
    """
    Sets the `lora_state_dict` into `text_encoder` coming from `transformers`.

    Args:
        lora_state_dict: The state dictionary to be set.
        prefix: String identifier to retrieve the portion of the state dict that belongs to `text_encoder`.
        text_encoder: Where the `lora_state_dict` is to be set.
    """

    text_encoder_state_dict = {
        f'{k.replace(prefix, "")}': v for k, v in lora_state_dict.items() if k.startswith(prefix)
    }
    text_encoder_state_dict = convert_state_dict_to_peft(convert_state_dict_to_diffusers(text_encoder_state_dict))
    set_peft_model_state_dict(text_encoder, text_encoder_state_dict, adapter_name="default")


223
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
anton-l's avatar
anton-l committed
224
225
226
227
228
229
230
class EMAModel:
    """
    Exponential Moving Average of models weights
    """

    def __init__(
        self,
231
232
233
234
235
236
237
        parameters: Iterable[torch.nn.Parameter],
        decay: float = 0.9999,
        min_decay: float = 0.0,
        update_after_step: int = 0,
        use_ema_warmup: bool = False,
        inv_gamma: Union[float, int] = 1.0,
        power: Union[float, int] = 2 / 3,
238
239
        model_cls: Optional[Any] = None,
        model_config: Dict[str, Any] = None,
240
        **kwargs,
anton-l's avatar
anton-l committed
241
242
    ):
        """
243
244
245
246
247
248
249
250
251
252
253
254
        Args:
            parameters (Iterable[torch.nn.Parameter]): The parameters to track.
            decay (float): The decay factor for the exponential moving average.
            min_decay (float): The minimum decay factor for the exponential moving average.
            update_after_step (int): The number of steps to wait before starting to update the EMA weights.
            use_ema_warmup (bool): Whether to use EMA warmup.
            inv_gamma (float):
                Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
            power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
            device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
                        weights will be stored on CPU.

anton-l's avatar
anton-l committed
255
        @crowsonkb's notes on EMA Warmup:
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
            If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
            to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
            gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
            at 215.4k steps).
anton-l's avatar
anton-l committed
260
261
        """

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

            # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
            use_ema_warmup = True

        if kwargs.get("max_value", None) is not None:
            deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead."
            deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False)
            decay = kwargs["max_value"]

        if kwargs.get("min_value", None) is not None:
            deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead."
            deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False)
            min_decay = kwargs["min_value"]

        parameters = list(parameters)
        self.shadow_params = [p.clone().detach() for p in parameters]

        if kwargs.get("device", None) is not None:
            deprecation_message = "The `device` argument is deprecated. Please use `to` instead."
            deprecate("device", "1.0.0", deprecation_message, standard_warn=False)
            self.to(device=kwargs["device"])

296
        self.temp_stored_params = None
anton-l's avatar
anton-l committed
297

298
299
        self.decay = decay
        self.min_decay = min_decay
anton-l's avatar
anton-l committed
300
        self.update_after_step = update_after_step
301
        self.use_ema_warmup = use_ema_warmup
anton-l's avatar
anton-l committed
302
303
        self.inv_gamma = inv_gamma
        self.power = power
304
        self.optimization_step = 0
305
        self.cur_decay_value = None  # set in `step()`
anton-l's avatar
anton-l committed
306

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        self.model_cls = model_cls
        self.model_config = model_config

    @classmethod
    def from_pretrained(cls, path, model_cls) -> "EMAModel":
        _, ema_kwargs = model_cls.load_config(path, return_unused_kwargs=True)
        model = model_cls.from_pretrained(path)

        ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config)

        ema_model.load_state_dict(ema_kwargs)
        return ema_model

    def save_pretrained(self, path):
        if self.model_cls is None:
            raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")

        if self.model_config is None:
            raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")

        model = self.model_cls.from_config(self.model_config)
        state_dict = self.state_dict()
        state_dict.pop("shadow_params", None)

        model.register_to_config(**state_dict)
        self.copy_to(model.parameters())
        model.save_pretrained(path)

335
    def get_decay(self, optimization_step: int) -> float:
anton-l's avatar
anton-l committed
336
337
338
339
340
341
342
343
        """
        Compute the decay factor for the exponential moving average.
        """
        step = max(0, optimization_step - self.update_after_step - 1)

        if step <= 0:
            return 0.0

344
345
346
347
348
349
350
351
352
        if self.use_ema_warmup:
            cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
        else:
            cur_decay_value = (1 + step) / (10 + step)

        cur_decay_value = min(cur_decay_value, self.decay)
        # make sure decay is not smaller than min_decay
        cur_decay_value = max(cur_decay_value, self.min_decay)
        return cur_decay_value
anton-l's avatar
anton-l committed
353
354

    @torch.no_grad()
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    def step(self, parameters: Iterable[torch.nn.Parameter]):
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

        parameters = list(parameters)

        self.optimization_step += 1

        # Compute the decay factor for the exponential moving average.
        decay = self.get_decay(self.optimization_step)
375
        self.cur_decay_value = decay
376
377
        one_minus_decay = 1 - decay

378
379
380
381
        context_manager = contextlib.nullcontext
        if is_transformers_available() and transformers.deepspeed.is_deepspeed_zero3_enabled():
            import deepspeed

382
        for s_param, param in zip(self.shadow_params, parameters):
383
384
385
386
387
388
389
390
            if is_transformers_available() and transformers.deepspeed.is_deepspeed_zero3_enabled():
                context_manager = deepspeed.zero.GatheredParameters(param, modifier_rank=None)

            with context_manager():
                if param.requires_grad:
                    s_param.sub_(one_minus_decay * (s_param - param))
                else:
                    s_param.copy_(param)
anton-l's avatar
anton-l committed
391

392
393
394
    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current averaged parameters into given collection of parameters.
anton-l's avatar
anton-l committed
395

396
397
398
399
400
401
402
        Args:
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored moving averages. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
        parameters = list(parameters)
        for s_param, param in zip(self.shadow_params, parameters):
403
            param.data.copy_(s_param.to(param.device).data)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

    def to(self, device=None, dtype=None) -> None:
        r"""Move internal buffers of the ExponentialMovingAverage to `device`.

        Args:
            device: like `device` argument to `torch.Tensor.to`
        """
        # .to() on the tensors handles None correctly
        self.shadow_params = [
            p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
            for p in self.shadow_params
        ]

    def state_dict(self) -> dict:
        r"""
        Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
        checkpointing to save the ema state dict.
        """
        # Following PyTorch conventions, references to tensors are returned:
        # "returns a reference to the state and not its copy!" -
        # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
        return {
            "decay": self.decay,
427
            "min_decay": self.min_decay,
428
429
430
431
432
433
434
435
            "optimization_step": self.optimization_step,
            "update_after_step": self.update_after_step,
            "use_ema_warmup": self.use_ema_warmup,
            "inv_gamma": self.inv_gamma,
            "power": self.power,
            "shadow_params": self.shadow_params,
        }

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        r"""
        Args:
        Save the current parameters for restoring later.
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                temporarily stored.
        """
        self.temp_stored_params = [param.detach().cpu().clone() for param in parameters]

    def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        r"""
        Args:
        Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without:
        affecting the original optimization process. Store the parameters before the `copy_to()` method. After
        validation (or model saving), use this to restore the former parameters.
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored parameters. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
        if self.temp_stored_params is None:
            raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`")
        for c_param, param in zip(self.temp_stored_params, parameters):
            param.data.copy_(c_param.data)

        # Better memory-wise.
        self.temp_stored_params = None

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def load_state_dict(self, state_dict: dict) -> None:
        r"""
        Args:
        Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
        ema state dict.
            state_dict (dict): EMA state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # deepcopy, to be consistent with module API
        state_dict = copy.deepcopy(state_dict)

        self.decay = state_dict.get("decay", self.decay)
        if self.decay < 0.0 or self.decay > 1.0:
            raise ValueError("Decay must be between 0 and 1")

        self.min_decay = state_dict.get("min_decay", self.min_decay)
        if not isinstance(self.min_decay, float):
            raise ValueError("Invalid min_decay")

        self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
        if not isinstance(self.optimization_step, int):
            raise ValueError("Invalid optimization_step")

        self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
        if not isinstance(self.update_after_step, int):
            raise ValueError("Invalid update_after_step")

        self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
        if not isinstance(self.use_ema_warmup, bool):
            raise ValueError("Invalid use_ema_warmup")

        self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
        if not isinstance(self.inv_gamma, (float, int)):
            raise ValueError("Invalid inv_gamma")

498
        self.power = state_dict.get("power", self.power)
499
500
501
        if not isinstance(self.power, (float, int)):
            raise ValueError("Invalid power")

502
503
504
505
506
507
508
        shadow_params = state_dict.get("shadow_params", None)
        if shadow_params is not None:
            self.shadow_params = shadow_params
            if not isinstance(self.shadow_params, list):
                raise ValueError("shadow_params must be a list")
            if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
                raise ValueError("shadow_params must all be Tensors")