"torchvision/vscode:/vscode.git/clone" did not exist on "01dca0ebee43330e69c3ea585887f38139f07875"
test_cycle_diffusion.py 9.62 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23

24
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
25
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
26
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
27

28
29
30
31
32
from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
33
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
34
35


36
enable_full_determinism()
37
38


39
class CycleDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
40
    pipeline_class = CycleDiffusionPipeline
41
42
43
44
45
46
47
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
48
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"})
49
50
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
51

52
    def get_dummy_components(self):
53
        torch.manual_seed(0)
54
        unet = UNet2DConditionModel(
55
56
57
58
59
60
61
62
63
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
64
65
66
67
68
69
70
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            set_alpha_to_one=False,
71
72
        )
        torch.manual_seed(0)
73
        vae = AutoencoderKL(
74
75
76
77
78
79
80
81
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
82
        text_encoder_config = CLIPTextConfig(
83
84
85
86
87
88
89
90
91
92
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
93
94
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
95

96
97
98
99
100
101
102
103
104
105
106
107
108
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
109
        image = image / 2 + 0.5
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "An astronaut riding an elephant",
            "source_prompt": "An astronaut riding a horse",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "eta": 0.1,
            "strength": 0.8,
            "guidance_scale": 3,
            "source_guidance_scale": 1,
            "output_type": "numpy",
        }
        return inputs
127
128
129
130

    def test_stable_diffusion_cycle(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

131
132
133
134
        components = self.get_dummy_components()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
135

136
137
        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
138
139
140
141
142
143
144
145
146
147
148
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_cycle_fp16(self):
149
150
151
152
153
154
155
156
157
158
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)
159
160
161
162
163
164
165
166
167
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_cycle_diffusion_pipeline_fp16(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
209
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
210
211
212
213
214
215
216
217
218
219
220
        pipe = CycleDiffusionPipeline.from_pretrained(
            model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
        )

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

221
        generator = torch.manual_seed(0)
222
223
224
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
225
            image=init_image,
226
227
228
229
230
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
231
            generator=generator,
232
233
234
235
236
            output_type="np",
        )
        image = output.images

        # the values aren't exactly equal, but the images look the same visually
Patrick von Platen's avatar
Patrick von Platen committed
237
        assert np.abs(image - expected_image).max() < 5e-1
238
239
240
241
242
243
244
245
246
247
248
249

    def test_cycle_diffusion_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
250
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
251
252
253
254
255
256
257
258
259
        pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

260
        generator = torch.manual_seed(0)
261
262
263
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
264
            image=init_image,
265
266
267
268
269
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
270
            generator=generator,
271
272
273
274
            output_type="np",
        )
        image = output.images

275
        assert np.abs(image - expected_image).max() < 2e-2