test_gguf.py 27.3 KB
Newer Older
1
2
3
4
5
6
7
8
import gc
import unittest

import numpy as np
import torch
import torch.nn as nn

from diffusers import (
9
10
    AuraFlowPipeline,
    AuraFlowTransformer2DModel,
11
    DiffusionPipeline,
hlky's avatar
hlky committed
12
    FluxControlPipeline,
13
14
15
    FluxPipeline,
    FluxTransformer2DModel,
    GGUFQuantizationConfig,
16
    HiDreamImageTransformer2DModel,
17
18
    SD3Transformer2DModel,
    StableDiffusion3Pipeline,
19
20
    WanTransformer3DModel,
    WanVACETransformer3DModel,
21
)
hlky's avatar
hlky committed
22
from diffusers.utils import load_image
23
from diffusers.utils.testing_utils import (
24
25
26
27
28
    Expectations,
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    enable_full_determinism,
29
30
31
32
    is_gguf_available,
    nightly,
    numpy_cosine_similarity_distance,
    require_accelerate,
33
    require_accelerator,
34
    require_big_accelerator,
35
    require_gguf_version_greater_or_equal,
36
    require_kernels_version_greater_or_equal,
hlky's avatar
hlky committed
37
    require_peft_backend,
38
    require_torch_version_greater,
39
40
41
    torch_device,
)

42
43
from ..test_torch_compile_utils import QuantCompileTests

44
45

if is_gguf_available():
46
47
    import gguf

48
49
    from diffusers.quantizers.gguf.utils import GGUFLinear, GGUFParameter

50
51
enable_full_determinism()

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
@nightly
@require_accelerate
@require_accelerator
@require_gguf_version_greater_or_equal("0.10.0")
@require_kernels_version_greater_or_equal("0.9.0")
class GGUFCudaKernelsTests(unittest.TestCase):
    def setUp(self):
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        gc.collect()
        backend_empty_cache(torch_device)

    def test_cuda_kernels_vs_native(self):
        if torch_device != "cuda":
            self.skipTest("CUDA kernels test requires CUDA device")

        from diffusers.quantizers.gguf.utils import GGUFLinear, can_use_cuda_kernels

        if not can_use_cuda_kernels:
            self.skipTest("CUDA kernels not available (compute capability < 7 or kernels not installed)")

        test_quant_types = ["Q4_0", "Q4_K"]
        test_shape = (1, 64, 512)  # batch, seq_len, hidden_dim
        compute_dtype = torch.bfloat16

        for quant_type in test_quant_types:
            qtype = getattr(gguf.GGMLQuantizationType, quant_type)
            in_features, out_features = 512, 512

            torch.manual_seed(42)
            float_weight = torch.randn(out_features, in_features, dtype=torch.float32)
            quantized_data = gguf.quants.quantize(float_weight.numpy(), qtype)
            weight_data = torch.from_numpy(quantized_data).to(device=torch_device)
            weight = GGUFParameter(weight_data, quant_type=qtype)

            x = torch.randn(test_shape, dtype=compute_dtype, device=torch_device)

            linear = GGUFLinear(in_features, out_features, bias=True, compute_dtype=compute_dtype)
            linear.weight = weight
            linear.bias = nn.Parameter(torch.randn(out_features, dtype=compute_dtype))
            linear = linear.to(torch_device)

            with torch.no_grad():
                output_native = linear.forward_native(x)
                output_cuda = linear.forward_cuda(x)

            assert torch.allclose(output_native, output_cuda, 1e-2), (
                f"GGUF CUDA Kernel Output is different from Native Output for {quant_type}"
            )


106
@nightly
107
@require_big_accelerator
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class GGUFSingleFileTesterMixin:
    ckpt_path = None
    model_cls = None
    torch_dtype = torch.bfloat16
    expected_memory_use_in_gb = 5

    def test_gguf_parameters(self):
        quant_storage_type = torch.uint8
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for param_name, param in model.named_parameters():
            if isinstance(param, GGUFParameter):
                assert hasattr(param, "quant_type")
                assert param.dtype == quant_storage_type

    def test_gguf_linear_layers(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear) and hasattr(module.weight, "quant_type"):
                assert module.weight.dtype == torch.uint8
133
                if module.bias is not None:
134
                    assert module.bias.dtype == self.torch_dtype
135
136
137
138
139
140
141

    def test_gguf_memory_usage(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)

        model = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
142
        model.to(torch_device)
143
144
145
        assert (model.get_memory_footprint() / 1024**3) < self.expected_memory_use_in_gb
        inputs = self.get_dummy_inputs()

146
147
        backend_reset_peak_memory_stats(torch_device)
        backend_empty_cache(torch_device)
148
149
        with torch.no_grad():
            model(**inputs)
150
        max_memory = backend_max_memory_allocated(torch_device)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        assert (max_memory / 1024**3) < self.expected_memory_use_in_gb

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        _keep_in_fp32_modules = self.model_cls._keep_in_fp32_modules
        self.model_cls._keep_in_fp32_modules = ["proj_out"]

        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    assert module.weight.dtype == torch.float32
        self.model_cls._keep_in_fp32_modules = _keep_in_fp32_modules

    def test_dtype_assignment(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            model.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
180
181
            device_0 = f"{torch_device}:0"
            model.to(device=device_0, dtype=torch.float16)
182
183
184
185
186
187
188
189
190
191

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.half()

        # This should work
192
        model.to(torch_device)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

    def test_dequantize_model(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
        model.dequantize()

        def _check_for_gguf_linear(model):
            has_children = list(model.children())
            if not has_children:
                return

            for name, module in model.named_children():
                if isinstance(module, nn.Linear):
                    assert not isinstance(module, GGUFLinear), f"{name} is still GGUFLinear"
                    assert not isinstance(module.weight, GGUFParameter), f"{name} weight is still GGUFParameter"

        for name, module in model.named_children():
            _check_for_gguf_linear(module)


class FluxGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
215
    diffusers_ckpt_path = "https://huggingface.co/sayakpaul/flux-diffusers-gguf/blob/main/model-Q4_0.gguf"
216
217
218
219
220
221
    torch_dtype = torch.bfloat16
    model_cls = FluxTransformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
222
        backend_empty_cache(torch_device)
223
224
225

    def tearDown(self):
        gc.collect()
226
        backend_empty_cache(torch_device)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4096, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 768),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
            "img_ids": torch.randn((4096, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "txt_ids": torch.randn((512, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "guidance": torch.tensor([3.5]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.47265625,
                0.43359375,
                0.359375,
                0.47070312,
                0.421875,
                0.34375,
                0.46875,
                0.421875,
                0.34765625,
                0.46484375,
                0.421875,
                0.34179688,
                0.47070312,
                0.42578125,
                0.34570312,
                0.46875,
                0.42578125,
                0.3515625,
                0.45507812,
                0.4140625,
                0.33984375,
                0.4609375,
                0.41796875,
                0.34375,
                0.45898438,
                0.41796875,
                0.34375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4

300
301
302
303
304
305
306
    def test_loading_gguf_diffusers_format(self):
        model = self.model_cls.from_single_file(
            self.diffusers_ckpt_path,
            subfolder="transformer",
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            config="black-forest-labs/FLUX.1-dev",
        )
307
        model.to(torch_device)
308
309
        model(**self.get_dummy_inputs())

310
311
312
313
314
315
316
317
318

class SD35LargeGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-large-gguf/blob/main/sd3.5_large-Q4_0.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
319
        backend_empty_cache(torch_device)
320
321
322

    def tearDown(self):
        gc.collect()
323
        backend_empty_cache(torch_device)
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-large", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
353
354
355
356
            prompt=prompt,
            num_inference_steps=2,
            generator=torch.Generator("cpu").manual_seed(0),
            output_type="np",
357
358
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
359
360
361
362
        expected_slices = Expectations(
            {
                ("xpu", 3): np.array(
                    [
363
364
365
366
367
368
369
370
371
372
373
374
                        0.1953125,
                        0.3125,
                        0.31445312,
                        0.13085938,
                        0.30664062,
                        0.29296875,
                        0.11523438,
                        0.2890625,
                        0.28320312,
                        0.16601562,
                        0.3046875,
                        0.328125,
375
                        0.140625,
376
377
378
                        0.31640625,
                        0.32421875,
                        0.12304688,
379
                        0.3046875,
380
381
382
383
384
385
386
387
388
389
                        0.3046875,
                        0.17578125,
                        0.3359375,
                        0.3203125,
                        0.16601562,
                        0.34375,
                        0.31640625,
                        0.15429688,
                        0.328125,
                        0.31054688,
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
                    ]
                ),
                ("cuda", 7): np.array(
                    [
                        0.17578125,
                        0.27539062,
                        0.27734375,
                        0.11914062,
                        0.26953125,
                        0.25390625,
                        0.109375,
                        0.25390625,
                        0.25,
                        0.15039062,
                        0.26171875,
                        0.28515625,
                        0.13671875,
                        0.27734375,
                        0.28515625,
                        0.12109375,
                        0.26757812,
                        0.265625,
                        0.16210938,
                        0.29882812,
                        0.28515625,
                        0.15625,
                        0.30664062,
                        0.27734375,
                        0.14648438,
                        0.29296875,
                        0.26953125,
                    ]
                ),
            }
424
        )
425
        expected_slice = expected_slices.get_expectation()
426
427
428
429
430
431
432
433
434
435
436
437
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4


class SD35MediumGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-medium-gguf/blob/main/sd3.5_medium-Q3_K_M.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 2

    def setUp(self):
        gc.collect()
438
        backend_empty_cache(torch_device)
439
440
441

    def tearDown(self):
        gc.collect()
442
        backend_empty_cache(torch_device)
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-medium", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.625,
                0.6171875,
                0.609375,
                0.65625,
                0.65234375,
                0.640625,
                0.6484375,
                0.640625,
                0.625,
                0.6484375,
                0.63671875,
                0.6484375,
                0.66796875,
                0.65625,
                0.65234375,
                0.6640625,
                0.6484375,
                0.6328125,
                0.6640625,
                0.6484375,
                0.640625,
                0.67578125,
                0.66015625,
                0.62109375,
                0.671875,
                0.65625,
                0.62109375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
508
509
510
511
512
513
514
515
516
517


class AuraFlowGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = AuraFlowTransformer2DModel
    expected_memory_use_in_gb = 4

    def setUp(self):
        gc.collect()
518
        backend_empty_cache(torch_device)
519
520
521

    def tearDown(self):
        gc.collect()
522
        backend_empty_cache(torch_device)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = AuraFlowPipeline.from_pretrained(
            "fal/AuraFlow-v0.3", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a pony holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.46484375,
                0.546875,
                0.64453125,
                0.48242188,
                0.53515625,
                0.59765625,
                0.47070312,
                0.5078125,
                0.5703125,
                0.42773438,
                0.50390625,
                0.5703125,
                0.47070312,
                0.515625,
                0.57421875,
                0.45898438,
                0.48632812,
                0.53515625,
                0.4453125,
                0.5078125,
                0.56640625,
                0.47851562,
                0.5234375,
                0.57421875,
                0.48632812,
                0.5234375,
                0.56640625,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
hlky's avatar
hlky committed
584
585
586
587


@require_peft_backend
@nightly
588
@require_big_accelerator
hlky's avatar
hlky committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class FluxControlLoRAGGUFTests(unittest.TestCase):
    def test_lora_loading(self):
        ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
        transformer = FluxTransformer2DModel.from_single_file(
            ckpt_path,
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            torch_dtype=torch.bfloat16,
        )
        pipe = FluxControlPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            transformer=transformer,
            torch_dtype=torch.bfloat16,
603
        ).to(torch_device)
hlky's avatar
hlky committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
        control_image = load_image(
            "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/control_image_robot_canny.png"
        )

        output = pipe(
            prompt=prompt,
            control_image=control_image,
            height=256,
            width=256,
            num_inference_steps=10,
            guidance_scale=30.0,
            output_type="np",
            generator=torch.manual_seed(0),
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.8047, 0.8359, 0.8711, 0.6875, 0.7070, 0.7383, 0.5469, 0.5820, 0.6641])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653


class HiDreamGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = HiDreamImageTransformer2DModel
    expected_memory_use_in_gb = 8

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 128, 128), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states_t5": torch.randn(
                (1, 128, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "encoder_hidden_states_llama3": torch.randn(
                (32, 1, 128, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_embeds": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timesteps": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }
654
655
656
657
658
659
660
661
662
663


class WanGGUFTexttoVideoSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/blob/main/wan2.1-t2v-14b-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanTransformer3DModel
    expected_memory_use_in_gb = 9

    def get_dummy_inputs(self):
        return {
664
            "hidden_states": torch.randn((1, 16, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }


class WanGGUFImagetoVideoSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/Wan2.1-I2V-14B-480P-gguf/blob/main/wan2.1-i2v-14b-480p-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanTransformer3DModel
    expected_memory_use_in_gb = 9

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 36, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "encoder_hidden_states_image": torch.randn(
                (1, 257, 1280), generator=torch.Generator("cpu").manual_seed(0)
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }


class WanVACEGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/blob/main/Wan2.1_14B_VACE-Q3_K_S.gguf"
    torch_dtype = torch.bfloat16
    model_cls = WanVACETransformer3DModel
    expected_memory_use_in_gb = 9

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 2, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "control_hidden_states": torch.randn(
                (1, 96, 2, 64, 64),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "control_hidden_states_scale": torch.randn(
                (8,),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }
722
723
724


@require_torch_version_greater("2.7.1")
725
class GGUFCompileTests(QuantCompileTests, unittest.TestCase):
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    torch_dtype = torch.bfloat16
    gguf_ckpt = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"

    @property
    def quantization_config(self):
        return GGUFQuantizationConfig(compute_dtype=self.torch_dtype)

    def _init_pipeline(self, *args, **kwargs):
        transformer = FluxTransformer2DModel.from_single_file(
            self.gguf_ckpt, quantization_config=self.quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
        )
        return pipe