test_dance_diffusion.py 4.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
from diffusers.utils import slow, torch_device
24
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
25

26
27
from ...test_pipelines_common import PipelineTesterMixin

28
29
30
31

torch.backends.cuda.matmul.allow_tf32 = False


32
33
34
35
class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = DanceDiffusionPipeline
    test_attention_slicing = False
    test_cpu_offload = False
36

37
    def get_dummy_components(self):
38
        torch.manual_seed(0)
39
        unet = UNet1DModel(
40
41
42
43
44
45
            block_out_channels=(32, 32, 64),
            extra_in_channels=16,
            sample_size=512,
            sample_rate=16_000,
            in_channels=2,
            out_channels=2,
46
47
48
49
            flip_sin_to_cos=True,
            use_timestep_embedding=False,
            time_embedding_type="fourier",
            mid_block_type="UNetMidBlock1D",
50
51
            down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
            up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
52
        )
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        scheduler = IPNDMScheduler()

        components = {
            "unet": unet,
            "scheduler": scheduler,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
67
            "batch_size": 1,
68
69
70
71
            "generator": generator,
            "num_inference_steps": 4,
        }
        return inputs
72
73
74

    def test_dance_diffusion(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
75
76
        components = self.get_dummy_components()
        pipe = DanceDiffusionPipeline(**components)
77
78
79
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

80
81
        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
82
83
84
85
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

86
        assert audio.shape == (1, 2, components["unet"].sample_size)
87
88
89
        expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000])
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

106
107
108
109
110
111
112
113
114
115
116
117
118

@slow
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_dance_diffusion(self):
        device = torch_device

119
        pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k")
120
121
122
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

123
        generator = torch.manual_seed(0)
124
        output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
125
126
127
128
129
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, pipe.unet.sample_size)
130
131
        expected_slice = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020])

132
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
133
134
135
136

    def test_dance_diffusion_fp16(self):
        device = torch_device

137
        pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16)
138
139
140
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

141
        generator = torch.manual_seed(0)
142
        output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
143
144
145
146
147
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, pipe.unet.sample_size)
148
149
        expected_slice = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341])

150
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2