test_dance_diffusion.py 4.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu

26
27
from ...test_pipelines_common import PipelineTesterMixin

28
29
30
31

torch.backends.cuda.matmul.allow_tf32 = False


32
33
34
35
class DanceDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = DanceDiffusionPipeline
    test_attention_slicing = False
    test_cpu_offload = False
36

37
    def get_dummy_components(self):
38
        torch.manual_seed(0)
39
        unet = UNet1DModel(
40
41
42
43
44
45
            block_out_channels=(32, 32, 64),
            extra_in_channels=16,
            sample_size=512,
            sample_rate=16_000,
            in_channels=2,
            out_channels=2,
46
47
48
49
            flip_sin_to_cos=True,
            use_timestep_embedding=False,
            time_embedding_type="fourier",
            mid_block_type="UNetMidBlock1D",
50
51
            down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
            up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
52
        )
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        scheduler = IPNDMScheduler()

        components = {
            "unet": unet,
            "scheduler": scheduler,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
67
            "batch_size": 1,
68
69
70
71
            "generator": generator,
            "num_inference_steps": 4,
        }
        return inputs
72
73
74

    def test_dance_diffusion(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
75
76
        components = self.get_dummy_components()
        pipe = DanceDiffusionPipeline(**components)
77
78
79
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

80
81
        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
82
83
84
85
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

86
        assert audio.shape == (1, 2, components["unet"].sample_size)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000])
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2


@slow
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_dance_diffusion(self):
        device = torch_device

103
        pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k")
104
105
106
107
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=device).manual_seed(0)
108
        output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
109
110
111
112
113
114
115
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, pipe.unet.sample_size)
        expected_slice = np.array([-0.1576, -0.1526, -0.127, -0.2699, -0.2762, -0.2487])
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2
116
117
118
119

    def test_dance_diffusion_fp16(self):
        device = torch_device

120
        pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k", torch_dtype=torch.float16)
121
122
123
124
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=device).manual_seed(0)
125
        output = pipe(generator=generator, num_inference_steps=100, audio_length_in_s=4.096)
126
127
128
129
130
131
132
        audio = output.audios

        audio_slice = audio[0, -3:, -3:]

        assert audio.shape == (1, 2, pipe.unet.sample_size)
        expected_slice = np.array([-0.1693, -0.1698, -0.1447, -0.3044, -0.3203, -0.2937])
        assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2