test_modeling_utils.py 8.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
20
21
import tempfile
import unittest

import torch

22
23
24
25
26
27
28
29
30
31
32
33
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
    LatentDiffusion,
    PNDMScheduler,
    UNetModel,
)
34
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from diffusers.pipeline_utils import DiffusionPipeline
36
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
37
from diffusers.testing_utils import floats_tensor, slow, torch_device
38
39


Patrick von Platen's avatar
Patrick von Platen committed
40
torch.backends.cuda.matmul.allow_tf32 = False
41
42


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
                self.register(a=a, b=b, c=c, d=d, e=e)

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


81
class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
84
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
88
        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
89
        time_step = torch.tensor([10]).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92

        return (noise, time_step)

93
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
94
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
95
        model.to(torch_device)
96
97
98
99

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
100
            new_model.to(torch_device)
101

Patrick von Platen's avatar
Patrick von Platen committed
102
        dummy_input = self.dummy_input
103

Patrick von Platen's avatar
Patrick von Platen committed
104
105
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
106
107

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
Patrick von Platen's avatar
Patrick von Platen committed
111
        model.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
116
117


118
119
120
121
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
122
        schedular = DDPMScheduler(timesteps=10)
123
124
125
126
127
128

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
129
130

        generator = torch.manual_seed(0)
131

patil-suraj's avatar
patil-suraj committed
132
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
133
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
134
        new_image = new_ddpm(generator=generator)
135
136
137
138
139
140
141
142
143
144
145
146
147

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
148
        generator = torch.manual_seed(0)
149

patil-suraj's avatar
patil-suraj committed
150
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
151
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
152
        new_image = ddpm_from_hub(generator=generator)
153
154

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
155
156
157
158
159
160

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
161
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
162
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
163
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
164
165

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
169
170
171
172
173
174
175
176
177
178
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
179
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
180
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
181
182

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
183
184
185
186
187
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
191
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
192

Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()
        print(image_slice.shape)

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
226
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
227

anton-l's avatar
anton-l committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
257
            _ = DiffusionPipeline.from_pretrained(tmpdirname)