test_config.py 7.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

19
20
from diffusers import (
    DDIMScheduler,
21
    DDPMScheduler,
22
23
24
25
26
27
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    PNDMScheduler,
    logging,
)
28
from diffusers.configuration_utils import ConfigMixin, register_to_config
29
from diffusers.utils import deprecate
30
from diffusers.utils.testing_utils import CaptureLogger
31
32


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class SampleObject(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class SampleObject2(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SampleObject3(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


79
80
81
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
82
            ConfigMixin.load_config("dummy_path")
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    def test_register_to_config(self):
        obj = SampleObject()
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # init ignore private arguments
        obj = SampleObject(_name_or_path="lalala")
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        # can override default
        obj = SampleObject(c=6)
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # can use positional arguments.
        obj = SampleObject(1, c=6)
        config = obj.config
        assert config["a"] == 1
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

    def test_save_load(self):
121
122
123
124
125
126
127
128
129
130
131
        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
132
            new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
133
134
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

139
140
141
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config
142
143
144
145
146

    def test_load_ddim_from_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
147
148
149
            ddim = DDIMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
150
151
152
153
154

        assert ddim.__class__ == DDIMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

155
    def test_load_euler_from_pndm(self):
156
157
158
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
159
            euler = EulerDiscreteScheduler.from_pretrained(
160
161
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
162
163
164
165
166

        assert euler.__class__ == EulerDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

167
    def test_load_euler_ancestral_from_pndm(self):
168
169
170
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
171
            euler = EulerAncestralDiscreteScheduler.from_pretrained(
172
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
173
174
175
176
177
178
179
180
181
182
            )

        assert euler.__class__ == EulerAncestralDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

    def test_load_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
183
184
185
            pndm = PNDMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
186
187
188
189

        assert pndm.__class__ == PNDMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
190

191
192
193
194
    def test_overwrite_config_on_load(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
195
            ddpm = DDPMScheduler.from_pretrained(
196
197
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="scheduler",
198
                prediction_type="sample",
199
200
201
202
                beta_end=8,
            )

        with CaptureLogger(logger) as cap_logger_2:
203
            ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
204

205
        with CaptureLogger(logger) as cap_logger:
Anton Lozhkov's avatar
Anton Lozhkov committed
206
            deprecate("remove this case", "0.13.0", "remove")
207
208
209
210
211
212
213
            ddpm_3 = DDPMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="scheduler",
                predict_epsilon=False,
                beta_end=8,
            )

214
        assert ddpm.__class__ == DDPMScheduler
215
        assert ddpm.config.prediction_type == "sample"
216
217
        assert ddpm.config.beta_end == 8
        assert ddpm_2.config.beta_start == 88
218
        assert ddpm_3.config.prediction_type == "sample"
219
220
221
222
223

        # no warning should be thrown
        assert cap_logger.out == ""
        assert cap_logger_2.out == ""

224
225
226
227
    def test_load_dpmsolver(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
228
            dpm = DPMSolverMultistepScheduler.from_pretrained(
229
230
231
232
233
234
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )

        assert dpm.__class__ == DPMSolverMultistepScheduler
        # no warning should be thrown
        assert cap_logger.out == ""