test_config.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
import json
import os
18
19
20
import tempfile
import unittest

21
import diffusers
22
23
from diffusers import (
    DDIMScheduler,
24
    DDPMScheduler,
25
26
27
28
29
30
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    PNDMScheduler,
    logging,
)
31
from diffusers.configuration_utils import ConfigMixin, register_to_config
32
from diffusers.utils.testing_utils import CaptureLogger
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class SampleObject(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class SampleObject2(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SampleObject3(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


81
82
83
84
85
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def test_register_to_config(self):
        obj = SampleObject()
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # init ignore private arguments
        obj = SampleObject(_name_or_path="lalala")
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        # can override default
        obj = SampleObject(c=6)
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # can use positional arguments.
        obj = SampleObject(1, c=6)
        config = obj.config
        assert config["a"] == 1
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

    def test_save_load(self):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

141
142
143
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

    def test_save_load_from_different_config(self):
        obj = SampleObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SampleObject", SampleObject)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            with CaptureLogger(logger) as cap_logger_1:
                new_obj_1 = SampleObject2.from_config(tmpdirname)

            # now save a config parameter that is not expected
            with open(os.path.join(tmpdirname, SampleObject.config_name), "r") as f:
                data = json.load(f)
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SampleObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger_2:
                new_obj_2 = SampleObject.from_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_3:
                new_obj_3 = SampleObject2.from_config(tmpdirname)

        assert new_obj_1.__class__ == SampleObject2
        assert new_obj_2.__class__ == SampleObject
        assert new_obj_3.__class__ == SampleObject2

        assert cap_logger_1.out == ""
        assert (
            cap_logger_2.out
            == "The config attributes {'unexpected': True} were passed to SampleObject, but are not expected and will"
            " be ignored. Please verify your config.json configuration file.\n"
        )
        assert cap_logger_2.out.replace("SampleObject", "SampleObject2") == cap_logger_3.out

    def test_save_load_compatible_schedulers(self):
        SampleObject2._compatible_classes = ["SampleObject"]
        SampleObject._compatible_classes = ["SampleObject2"]

        obj = SampleObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SampleObject", SampleObject)
        setattr(diffusers, "SampleObject2", SampleObject2)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            # now save a config parameter that is expected by another class, but not origin class
            with open(os.path.join(tmpdirname, SampleObject.config_name), "r") as f:
                data = json.load(f)
                data["f"] = [0, 0]
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SampleObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger:
                new_obj = SampleObject.from_config(tmpdirname)

        assert new_obj.__class__ == SampleObject

        assert (
            cap_logger.out
            == "The config attributes {'unexpected': True} were passed to SampleObject, but are not expected and will"
            " be ignored. Please verify your config.json configuration file.\n"
        )

    def test_save_load_from_different_config_comp_schedulers(self):
        SampleObject3._compatible_classes = ["SampleObject", "SampleObject2"]
        SampleObject2._compatible_classes = ["SampleObject", "SampleObject3"]
        SampleObject._compatible_classes = ["SampleObject2", "SampleObject3"]

        obj = SampleObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SampleObject", SampleObject)
        setattr(diffusers, "SampleObject2", SampleObject2)
        setattr(diffusers, "SampleObject3", SampleObject3)
        logger = logging.get_logger("diffusers.configuration_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_1:
                new_obj_1 = SampleObject.from_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_2:
                new_obj_2 = SampleObject2.from_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_3:
                new_obj_3 = SampleObject3.from_config(tmpdirname)

        assert new_obj_1.__class__ == SampleObject
        assert new_obj_2.__class__ == SampleObject2
        assert new_obj_3.__class__ == SampleObject3

        assert cap_logger_1.out == ""
        assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
        assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"

    def test_load_ddim_from_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
255
            ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
256
257
258
259
260

        assert ddim.__class__ == DDIMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

261
    def test_load_euler_from_pndm(self):
262
263
264
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
265
266
267
            euler = EulerDiscreteScheduler.from_config(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
268
269
270
271
272

        assert euler.__class__ == EulerDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

273
    def test_load_euler_ancestral_from_pndm(self):
274
275
276
277
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
            euler = EulerAncestralDiscreteScheduler.from_config(
278
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
279
280
281
282
283
284
285
286
287
288
            )

        assert euler.__class__ == EulerAncestralDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

    def test_load_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
289
            pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
290
291
292
293

        assert pndm.__class__ == PNDMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def test_overwrite_config_on_load(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
            ddpm = DDPMScheduler.from_config(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="scheduler",
                predict_epsilon=False,
                beta_end=8,
            )

        with CaptureLogger(logger) as cap_logger_2:
            ddpm_2 = DDPMScheduler.from_config("google/ddpm-celebahq-256", beta_start=88)

        assert ddpm.__class__ == DDPMScheduler
        assert ddpm.config.predict_epsilon is False
        assert ddpm.config.beta_end == 8
        assert ddpm_2.config.beta_start == 88

        # no warning should be thrown
        assert cap_logger.out == ""
        assert cap_logger_2.out == ""

318
319
320
321
322
323
324
325
326
327
328
    def test_load_dpmsolver(self):
        logger = logging.get_logger("diffusers.configuration_utils")

        with CaptureLogger(logger) as cap_logger:
            dpm = DPMSolverMultistepScheduler.from_config(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )

        assert dpm.__class__ == DPMSolverMultistepScheduler
        # no warning should be thrown
        assert cap_logger.out == ""