pipeline_ddpm.py 5.46 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

20
from ...configuration_utils import FrozenDict
21
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
22
from ...utils import deprecate
Patrick von Platen's avatar
Patrick von Platen committed
23
24


Patrick von Platen's avatar
Patrick von Platen committed
25
class DDPMPipeline(DiffusionPipeline):
26
27
28
29
30
31
32
33
34
35
36
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

37
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
38
        super().__init__()
39
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
40

Patrick von Platen's avatar
Patrick von Platen committed
41
    @torch.no_grad()
42
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
43
44
        self,
        batch_size: int = 1,
45
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
46
        num_inference_steps: int = 1000,
Sid Sahai's avatar
Sid Sahai committed
47
48
49
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
50
    ) -> Union[ImagePipelineOutput, Tuple]:
51
52
        r"""
        Args:
53
            batch_size (`int`, *optional*, defaults to 1):
54
                The number of images to generate.
55
            generator (`torch.Generator`, *optional*):
56
57
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
58
59
60
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
61
            output_type (`str`, *optional*, defaults to `"pil"`):
62
                The output format of the generate image. Choose between
63
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
64
            return_dict (`bool`, *optional*, defaults to `True`):
65
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
66
67
68
69
70

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
71
        """
72
        message = (
73
74
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
75
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
76
        predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
77
78
79

        if predict_epsilon is not None:
            new_config = dict(self.scheduler.config)
80
            new_config["prediction_type"] = "epsilon" if predict_epsilon else "sample"
81
            self.scheduler._internal_dict = FrozenDict(new_config)
Patrick von Platen's avatar
Patrick von Platen committed
82

83
84
85
        if generator is not None and generator.device.type != self.device.type and self.device.type != "mps":
            message = (
                f"The `generator` device is `{generator.device}` and does not match the pipeline "
86
                f"device `{self.device}`, so the `generator` will be ignored. "
87
88
89
90
                f'Please use `torch.Generator(device="{self.device}")` instead.'
            )
            deprecate(
                "generator.device == 'cpu'",
Anton Lozhkov's avatar
Anton Lozhkov committed
91
                "0.13.0",
92
93
94
95
                message,
            )
            generator = None

Patrick von Platen's avatar
Patrick von Platen committed
96
        # Sample gaussian noise to begin loop
97
98
99
100
101
        if isinstance(self.unet.sample_size, int):
            image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)
        else:
            image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size)

102
103
104
105
106
107
        if self.device.type == "mps":
            # randn does not work reproducibly on mps
            image = torch.randn(image_shape, generator=generator)
            image = image.to(self.device)
        else:
            image = torch.randn(image_shape, generator=generator, device=self.device)
Patrick von Platen's avatar
Patrick von Platen committed
108

109
        # set step values
110
        self.scheduler.set_timesteps(num_inference_steps)
111

hysts's avatar
hysts committed
112
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
113
            # 1. predict noise model_output
114
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
115

116
            # 2. compute previous image: x_t -> x_t-1
117
            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
118

119
120
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
121
122
        if output_type == "pil":
            image = self.numpy_to_pil(image)
123

124
125
126
127
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)