inpaint.mdx 3.58 KB
Newer Older
Nathan Lambert's avatar
Nathan Lambert committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

13
# Text-Guided Image-Inpainting
Patrick von Platen's avatar
Patrick von Platen committed
14

15
The [`StableDiffusionInpaintPipeline`] lets you edit specific parts of an image by providing a mask and a text prompt. It uses a version of Stable Diffusion specifically trained for in-painting tasks.
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
<Tip warning={true}>
Note that this model is distributed separately from the regular Stable Diffusion model, so you have to accept its license even if you accepted the Stable Diffusion one in the past.
Patrick von Platen's avatar
Patrick von Platen committed
19

20
21
22
23
Please, visit the [model card](https://huggingface.co/runwayml/stable-diffusion-inpainting), read the license carefully and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
</Tip>

```python
24
import PIL
25
26
27
import requests
import torch
from io import BytesIO
28
29

from diffusers import StableDiffusionInpaintPipeline
Patrick von Platen's avatar
Patrick von Platen committed
30
31


32
33
34
def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
35
36


37
38
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
Patrick von Platen's avatar
Patrick von Platen committed
39

40
41
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
Patrick von Platen's avatar
Patrick von Platen committed
42

43
pipe = StableDiffusionInpaintPipeline.from_pretrained(
44
45
46
47
48
49
50
51
52
    "runwayml/stable-diffusion-inpainting",
    revision="fp16",
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
53

54
55
56
`image`          | `mask_image` | `prompt` | **Output** |
:-------------------------:|:-------------------------:|:-------------------------:|-------------------------:|
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="250"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="250"/> | ***Face of a yellow cat, high resolution, sitting on a park bench*** | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="250"/> |
57

Patrick von Platen's avatar
Patrick von Platen committed
58

59
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
60
61
62
63

<Tip warning={true}>
A previous experimental implementation of in-painting used a different, lower-quality process. To ensure backwards compatibility, loading a pretrained pipeline that doesn't contain the new model will still apply the old in-painting method.
</Tip>