test_modeling_utils.py 9.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
20
21
import tempfile
import unittest

import torch

22
23
24
25
26
27
28
29
30
31
32
33
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
    LatentDiffusion,
    PNDMScheduler,
    UNetModel,
)
34
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from diffusers.pipeline_utils import DiffusionPipeline
36
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
37
from diffusers.testing_utils import floats_tensor, slow, torch_device
38
39


Patrick von Platen's avatar
Patrick von Platen committed
40
torch.backends.cuda.matmul.allow_tf32 = False
41
42


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
60
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

80
81
82
83
84
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
85
class ModelTesterMixin:
86
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
87
88
89
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
90
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
91
        model.eval()
92
93
94
95

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
96
            new_model.to(torch_device)
97

patil-suraj's avatar
patil-suraj committed
98
99
100
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
101
102

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
patil-suraj's avatar
patil-suraj committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    
    
    def test_determinism(self):
        pass
    
    def test_output(self):
        pass
    
    def test_forward_signature(self):
        pass
    
    def test_model_from_config(self):
        pass

    def test_training(self):
        pass
119
120


patil-suraj's avatar
patil-suraj committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"x": noise, "t": time_step}

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
    
    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.to(torch_device)

        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"


156
157
158
159
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
160
        schedular = DDPMScheduler(timesteps=10)
161
162
163
164
165
166

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
167
168

        generator = torch.manual_seed(0)
169

patil-suraj's avatar
patil-suraj committed
170
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
171
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
172
        new_image = new_ddpm(generator=generator)
173
174
175
176
177
178
179
180
181
182
183
184
185

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
186
        generator = torch.manual_seed(0)
187

patil-suraj's avatar
patil-suraj committed
188
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
189
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
190
        new_image = ddpm_from_hub(generator=generator)
191
192

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
198

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
199
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
200
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
201
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
202
203

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
204
205
206
207
208
209
210
211
212
213
214
215
216
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
217
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
218
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
219
220

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
224
225
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
226
227
228
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
229
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
230

Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()
        print(image_slice.shape)

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
264
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
265

anton-l's avatar
anton-l committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
295
            _ = DiffusionPipeline.from_pretrained(tmpdirname)