denoise.py 9.82 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, List, Tuple

import torch

from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance
from ...models import WanTransformer3DModel
from ...schedulers import UniPCMultistepScheduler
from ...utils import logging
from ..modular_pipeline import (
    BlockState,
    LoopSequentialPipelineBlocks,
27
    ModularPipelineBlocks,
Aryan's avatar
Aryan committed
28
29
30
31
32
33
34
35
36
    PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import WanModularPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


37
class WanLoopDenoiser(ModularPipelineBlocks):
Aryan's avatar
Aryan committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    model_name = "wan"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 5.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("transformer", WanTransformer3DModel),
        ]

    @property
    def description(self) -> str:
        return (
            "Step within the denoising loop that denoise the latents with guidance. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return [
            InputParam("attention_kwargs"),
        ]

    @property
    def intermediate_inputs(self) -> List[str]:
        return [
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
YiYi Xu's avatar
YiYi Xu committed
82
                kwargs_type="denoiser_input_fields",
Aryan's avatar
Aryan committed
83
84
85
                description=(
                    "All conditional model inputs that need to be prepared with guider. "
                    "It should contain prompt_embeds/negative_prompt_embeds. "
YiYi Xu's avatar
YiYi Xu committed
86
                    "Please add `kwargs_type=denoiser_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
Aryan's avatar
Aryan committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
                ),
            ),
        ]

    @torch.no_grad()
    def __call__(
        self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
    ) -> PipelineState:
        #  Map the keys we'll see on each `guider_state_batch` (e.g. guider_state_batch.prompt_embeds)
        #  to the corresponding (cond, uncond) fields on block_state. (e.g. block_state.prompt_embeds, block_state.negative_prompt_embeds)
        guider_input_fields = {
            "prompt_embeds": ("prompt_embeds", "negative_prompt_embeds"),
        }
        transformer_dtype = components.transformer.dtype

        components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)

        # Prepare mini‐batches according to guidance method and `guider_input_fields`
        # Each guider_state_batch will have .prompt_embeds, .time_ids, text_embeds, image_embeds.
        # e.g. for CFG, we prepare two batches: one for uncond, one for cond
        # for first batch, guider_state_batch.prompt_embeds correspond to block_state.prompt_embeds
        # for second batch, guider_state_batch.prompt_embeds correspond to block_state.negative_prompt_embeds
        guider_state = components.guider.prepare_inputs(block_state, guider_input_fields)

        # run the denoiser for each guidance batch
        for guider_state_batch in guider_state:
            components.guider.prepare_models(components.transformer)
            cond_kwargs = guider_state_batch.as_dict()
            cond_kwargs = {k: v for k, v in cond_kwargs.items() if k in guider_input_fields}
            prompt_embeds = cond_kwargs.pop("prompt_embeds")

            # Predict the noise residual
            # store the noise_pred in guider_state_batch so that we can apply guidance across all batches
            guider_state_batch.noise_pred = components.transformer(
                hidden_states=block_state.latents.to(transformer_dtype),
                timestep=t.flatten(),
                encoder_hidden_states=prompt_embeds,
                attention_kwargs=block_state.attention_kwargs,
                return_dict=False,
            )[0]
            components.guider.cleanup_models(components.transformer)

        # Perform guidance
130
        block_state.noise_pred = components.guider(guider_state)[0]
Aryan's avatar
Aryan committed
131
132
133
134

        return components, block_state


135
class WanLoopAfterDenoiser(ModularPipelineBlocks):
Aryan's avatar
Aryan committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    model_name = "wan"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", UniPCMultistepScheduler),
        ]

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that update the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return []

    @property
    def intermediate_inputs(self) -> List[str]:
        return [
            InputParam("generator"),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents")]

    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        # Perform scheduler step using the predicted output
        latents_dtype = block_state.latents.dtype
        block_state.latents = components.scheduler.step(
            block_state.noise_pred.float(),
            t,
            block_state.latents.float(),
            return_dict=False,
        )[0]

        if block_state.latents.dtype != latents_dtype:
            block_state.latents = block_state.latents.to(latents_dtype)

        return components, block_state


class WanDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "wan"

    @property
    def description(self) -> str:
        return (
            "Pipeline block that iteratively denoise the latents over `timesteps`. "
            "The specific steps with each iteration can be customized with `sub_blocks` attributes"
        )

    @property
    def loop_expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 5.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("scheduler", UniPCMultistepScheduler),
            ComponentSpec("transformer", WanTransformer3DModel),
        ]

    @property
    def loop_intermediate_inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.num_warmup_steps = max(
            len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
        )

        with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
            for i, t in enumerate(block_state.timesteps):
                components, block_state = self.loop_step(components, block_state, i=i, t=t)
                if i == len(block_state.timesteps) - 1 or (
                    (i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
                ):
                    progress_bar.update()

        self.set_block_state(state, block_state)

        return components, state


class WanDenoiseStep(WanDenoiseLoopWrapper):
    block_classes = [
        WanLoopDenoiser,
        WanLoopAfterDenoiser,
    ]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
co63oc's avatar
co63oc committed
256
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
Aryan's avatar
Aryan committed
257
258
259
260
            " - `WanLoopDenoiser`\n"
            " - `WanLoopAfterDenoiser`\n"
            "This block supports both text2vid tasks."
        )