pipeline_ddpm.py 4.15 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Pedro Cuenca's avatar
Pedro Cuenca committed
17
import warnings
Sid Sahai's avatar
Sid Sahai committed
18
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
21
import torch

22
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
23
24


Patrick von Platen's avatar
Patrick von Platen committed
25
class DDPMPipeline(DiffusionPipeline):
26
27
28
29
30
31
32
33
34
35
36
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

37
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
38
        super().__init__()
39
40
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
41

Patrick von Platen's avatar
Patrick von Platen committed
42
    @torch.no_grad()
43
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
44
45
46
47
48
49
        self,
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
50
    ) -> Union[ImagePipelineOutput, Tuple]:
51
52
        r"""
        Args:
53
            batch_size (`int`, *optional*, defaults to 1):
54
                The number of images to generate.
55
            generator (`torch.Generator`, *optional*):
56
57
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
58
            output_type (`str`, *optional*, defaults to `"pil"`):
59
                The output format of the generate image. Choose between
60
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
61
            return_dict (`bool`, *optional*, defaults to `True`):
62
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
63
64
65
66
67

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
68
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
69
70
71
72
73
74
        if "torch_device" in kwargs:
            device = kwargs.pop("torch_device")
            warnings.warn(
                "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
                " Consider using `pipe.to(torch_device)` instead."
            )
Patrick von Platen's avatar
Patrick von Platen committed
75

Pedro Cuenca's avatar
Pedro Cuenca committed
76
77
78
79
            # Set device as before (to be removed in 0.3.0)
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
            self.to(device)
Patrick von Platen's avatar
Patrick von Platen committed
80
81

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
82
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
83
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
84
85
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
86
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
87

88
89
90
        # set step values
        self.scheduler.set_timesteps(1000)

hysts's avatar
hysts committed
91
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
92
            # 1. predict noise model_output
93
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
94

Patrick von Platen's avatar
Patrick von Platen committed
95
            # 2. compute previous image: x_t -> t_t-1
96
            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
97

98
99
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
100
101
        if output_type == "pil":
            image = self.numpy_to_pil(image)
102

103
104
105
106
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)