pipeline_ddim.py 4.73 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Pedro Cuenca's avatar
Pedro Cuenca committed
17
import warnings
Sid Sahai's avatar
Sid Sahai committed
18
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
21
import torch

22
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
23
24


Patrick von Platen's avatar
Patrick von Platen committed
25
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
26
27
28
29
30
31
32
33
34
35
36
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

37
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
38
        super().__init__()
39
40
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
41

Patrick von Platen's avatar
Patrick von Platen committed
42
    @torch.no_grad()
43
44
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
45
46
47
48
49
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
        eta: float = 0.0,
        num_inference_steps: int = 50,
        output_type: Optional[str] = "pil",
50
51
52
        return_dict: bool = True,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
53
54
        r"""
        Args:
55
            batch_size (`int`, *optional*, defaults to 1):
Kashif Rasul's avatar
Kashif Rasul committed
56
                The number of images to generate.
57
            generator (`torch.Generator`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
58
59
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
60
            eta (`float`, *optional*, defaults to 0.0):
Kashif Rasul's avatar
Kashif Rasul committed
61
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
62
            num_inference_steps (`int`, *optional*, defaults to 50):
Kashif Rasul's avatar
Kashif Rasul committed
63
64
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
65
            output_type (`str`, *optional*, defaults to `"pil"`):
Kashif Rasul's avatar
Kashif Rasul committed
66
                The output format of the generate image. Choose between
67
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
68
            return_dict (`bool`, *optional*, defaults to `True`):
Kashif Rasul's avatar
Kashif Rasul committed
69
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
70
71
72
73
74

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
Kashif Rasul's avatar
Kashif Rasul committed
75
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
76
77
78
79
80
81
82

        if "torch_device" in kwargs:
            device = kwargs.pop("torch_device")
            warnings.warn(
                "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
                " Consider using `pipe.to(torch_device)` instead."
            )
Patrick von Platen's avatar
Patrick von Platen committed
83

Pedro Cuenca's avatar
Pedro Cuenca committed
84
85
86
87
88
89
            # Set device as before (to be removed in 0.3.0)
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
            self.to(device)

        # eta corresponds to η in paper and should be between [0, 1]
Patrick von Platen's avatar
Patrick von Platen committed
90
91

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
92
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
93
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
94
95
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
96
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
97

98
99
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
100

hysts's avatar
hysts committed
101
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
102
            # 1. predict noise model_output
103
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
104

105
106
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
            # do x_t -> x_t-1
107
            image = self.scheduler.step(model_output, t, image, eta).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
108

109
110
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
111
112
        if output_type == "pil":
            image = self.numpy_to_pil(image)
113

114
115
116
117
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)