unet_kandinsky3.py 17.6 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from dataclasses import dataclass
16
from typing import Tuple, Union
17
18
19
20

import torch
from torch import nn

21
22
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput, logging
23
24
from ..attention import AttentionMixin
from ..attention_processor import Attention, AttnProcessor
25
26
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
27
28
29
30
31
32
33


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class Kandinsky3UNetOutput(BaseOutput):
34
    sample: torch.Tensor = None
35
36
37
38
39
40
41
42
43
44
45
46
47
48


class Kandinsky3EncoderProj(nn.Module):
    def __init__(self, encoder_hid_dim, cross_attention_dim):
        super().__init__()
        self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
        self.projection_norm = nn.LayerNorm(cross_attention_dim)

    def forward(self, x):
        x = self.projection_linear(x)
        x = self.projection_norm(x)
        return x


49
class Kandinsky3UNet(ModelMixin, AttentionMixin, ConfigMixin):
50
51
52
53
54
55
56
57
    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
        time_embedding_dim: int = 1536,
        groups: int = 32,
        attention_head_dim: int = 64,
        layers_per_block: Union[int, Tuple[int]] = 3,
58
        block_out_channels: Tuple[int, ...] = (384, 768, 1536, 3072),
59
60
61
62
63
        cross_attention_dim: Union[int, Tuple[int]] = 4096,
        encoder_hid_dim: int = 4096,
    ):
        super().__init__()

64
        # TODO(Yiyi): Give better name and put into config for the following 4 parameters
65
66
67
68
69
70
71
        expansion_ratio = 4
        compression_ratio = 2
        add_cross_attention = (False, True, True, True)
        add_self_attention = (False, True, True, True)

        out_channels = in_channels
        init_channels = block_out_channels[0] // 2
72
        self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        self.time_embedding = TimestepEmbedding(
            init_channels,
            time_embedding_dim,
        )

        self.add_time_condition = Kandinsky3AttentionPooling(
            time_embedding_dim, cross_attention_dim, attention_head_dim
        )

        self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)

        self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)

        hidden_dims = [init_channels] + list(block_out_channels)
        in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
89
        text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
90
91
92
93
94
95
96
97
98
99
100
        num_blocks = len(block_out_channels) * [layers_per_block]
        layer_params = [num_blocks, text_dims, add_self_attention]
        rev_layer_params = map(reversed, layer_params)

        cat_dims = []
        self.num_levels = len(in_out_dims)
        self.down_blocks = nn.ModuleList([])
        for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(in_out_dims, *layer_params)
        ):
            down_sample = level != (self.num_levels - 1)
101
            cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            self.down_blocks.append(
                Kandinsky3DownSampleBlock(
                    in_dim,
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    down_sample,
                    self_attention,
                )
            )

        self.up_blocks = nn.ModuleList([])
        for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(reversed(in_out_dims), *rev_layer_params)
        ):
            up_sample = level != 0
            self.up_blocks.append(
                Kandinsky3UpSampleBlock(
                    in_dim,
                    cat_dims.pop(),
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    up_sample,
                    self_attention,
                )
            )

        self.conv_norm_out = nn.GroupNorm(groups, init_channels)
        self.conv_act_out = nn.SiLU()
        self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
148
        self.set_attn_processor(AttnProcessor())
149
150

    def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
151
152
153
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
154
155
156
157
158
159
160
161
162

        if not torch.is_tensor(timestep):
            dtype = torch.float32 if isinstance(timestep, float) else torch.int32
            timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
        elif len(timestep.shape) == 0:
            timestep = timestep[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timestep = timestep.expand(sample.shape[0])
163
        time_embed_input = self.time_proj(timestep).to(sample.dtype)
164
165
        time_embed = self.time_embedding(time_embed_input)

166
        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
167

168
169
        if encoder_hidden_states is not None:
            time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
170
171

        hidden_states = []
172
        sample = self.conv_in(sample)
173
        for level, down_sample in enumerate(self.down_blocks):
174
            sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
175
            if level != self.num_levels - 1:
176
                hidden_states.append(sample)
177
178
179

        for level, up_sample in enumerate(self.up_blocks):
            if level != 0:
180
181
                sample = torch.cat([sample, hidden_states.pop()], dim=1)
            sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
182

183
184
185
        sample = self.conv_norm_out(sample)
        sample = self.conv_act_out(sample)
        sample = self.conv_out(sample)
186
187

        if not return_dict:
188
189
            return (sample,)
        return Kandinsky3UNetOutput(sample=sample)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208


class Kandinsky3UpSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        cat_dim,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        up_sample=True,
        self_attention=True,
    ):
        super().__init__()
209
        up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
210
211
212
213
214
215
216
217
218
219
220
221
        hidden_channels = (
            [(in_channels + cat_dim, in_channels)]
            + [(in_channels, in_channels)] * (num_blocks - 2)
            + [(in_channels, out_channels)]
        )
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

222
223
224
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
225
            )
226
227
        else:
            attentions.append(nn.Identity())
228
229
230
231
232

        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
            )
233
234
235
236
237
238

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
239
                )
240
241
242
            else:
                attentions.append(nn.Identity())

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            resnets_out.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)

        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)
        return x


class Kandinsky3DownSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        down_sample=True,
        self_attention=True,
    ):
        super().__init__()
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

286
287
288
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
289
            )
290
291
        else:
            attentions.append(nn.Identity())
292

293
        up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
294
295
296
297
298
        hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )
299
300
301
302
303
304

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
305
                )
306
307
308
            else:
                attentions.append(nn.Identity())

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            resnets_out.append(
                Kandinsky3ResNetBlock(
                    out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)

        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)
        return x


class Kandinsky3ConditionalGroupNorm(nn.Module):
    def __init__(self, groups, normalized_shape, context_dim):
        super().__init__()
        self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
        self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
        self.context_mlp[1].weight.data.zero_()
        self.context_mlp[1].bias.data.zero_()

    def forward(self, x, context):
        context = self.context_mlp(context)

        for _ in range(len(x.shape[2:])):
            context = context.unsqueeze(-1)

        scale, shift = context.chunk(2, dim=1)
        x = self.norm(x) * (scale + 1.0) + shift
        return x


class Kandinsky3Block(nn.Module):
    def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
        super().__init__()
        self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
        self.activation = nn.SiLU()
355
356
357
358
359
        if up_resolution is not None and up_resolution:
            self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
        else:
            self.up_sample = nn.Identity()

360
361
        padding = int(kernel_size > 1)
        self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
362
363
364
365
366

        if up_resolution is not None and not up_resolution:
            self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
        else:
            self.down_sample = nn.Identity()
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

    def forward(self, x, time_embed):
        x = self.group_norm(x, time_embed)
        x = self.activation(x)
        x = self.up_sample(x)
        x = self.projection(x)
        x = self.down_sample(x)
        return x


class Kandinsky3ResNetBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
    ):
        super().__init__()
        kernel_sizes = [1, 3, 3, 1]
        hidden_channel = max(in_channels, out_channels) // compression_ratio
        hidden_channels = (
            [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
        )
        self.resnet_blocks = nn.ModuleList(
            [
                Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
                for (in_channel, out_channel), kernel_size, up_resolution in zip(
                    hidden_channels, kernel_sizes, up_resolutions
                )
            ]
        )
395
396
397
398
        self.shortcut_up_sample = (
            nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
            if True in up_resolutions
            else nn.Identity()
399
        )
400
401
        self.shortcut_projection = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
402
        )
403
404
405
406
        self.shortcut_down_sample = (
            nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
            if False in up_resolutions
            else nn.Identity()
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        )

    def forward(self, x, time_embed):
        out = x
        for resnet_block in self.resnet_blocks:
            out = resnet_block(out, time_embed)

        x = self.shortcut_up_sample(x)
        x = self.shortcut_projection(x)
        x = self.shortcut_down_sample(x)
        x = x + out
        return x


class Kandinsky3AttentionPooling(nn.Module):
    def __init__(self, num_channels, context_dim, head_dim=64):
        super().__init__()
424
425
426
427
428
429
430
        self.attention = Attention(
            context_dim,
            context_dim,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
431
432

    def forward(self, x, context, context_mask=None):
433
        context_mask = context_mask.to(dtype=context.dtype)
434
435
436
437
438
439
440
441
        context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
        return x + context.squeeze(1)


class Kandinsky3AttentionBlock(nn.Module):
    def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
        super().__init__()
        self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
442
443
444
445
446
447
448
        self.attention = Attention(
            num_channels,
            context_dim or num_channels,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
449
450
451
452
453
454
455
456
457
458
459
460
461
462

        hidden_channels = expansion_ratio * num_channels
        self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
        self.feed_forward = nn.Sequential(
            nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
            nn.SiLU(),
            nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
        )

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        height, width = x.shape[-2:]
        out = self.in_norm(x, time_embed)
        out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
        context = context if context is not None else out
463
464
        if context_mask is not None:
            context_mask = context_mask.to(dtype=context.dtype)
465

466
        out = self.attention(out, context, context_mask)
467
468
469
470
471
472
473
        out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
        x = x + out

        out = self.out_norm(x, time_embed)
        out = self.feed_forward(out)
        x = x + out
        return x