"official/modeling/optimization/adafactor_optimizer.py" did not exist on "c5a4978d821d122e8605b0af004f5aa0cdcab30c"
unet_kandinsky3.py 20.1 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
from dataclasses import dataclass
from typing import Dict, Tuple, Union

import torch
from torch import nn

21
22
23
24
25
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput, logging
from ..attention_processor import Attention, AttentionProcessor, AttnProcessor
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
26
27
28
29
30
31
32


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class Kandinsky3UNetOutput(BaseOutput):
33
    sample: torch.Tensor = None
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


class Kandinsky3EncoderProj(nn.Module):
    def __init__(self, encoder_hid_dim, cross_attention_dim):
        super().__init__()
        self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
        self.projection_norm = nn.LayerNorm(cross_attention_dim)

    def forward(self, x):
        x = self.projection_linear(x)
        x = self.projection_norm(x)
        return x


class Kandinsky3UNet(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
        time_embedding_dim: int = 1536,
        groups: int = 32,
        attention_head_dim: int = 64,
        layers_per_block: Union[int, Tuple[int]] = 3,
        block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
        cross_attention_dim: Union[int, Tuple[int]] = 4096,
        encoder_hid_dim: int = 4096,
    ):
        super().__init__()

63
        # TODO(Yiyi): Give better name and put into config for the following 4 parameters
64
65
66
67
68
69
70
        expansion_ratio = 4
        compression_ratio = 2
        add_cross_attention = (False, True, True, True)
        add_self_attention = (False, True, True, True)

        out_channels = in_channels
        init_channels = block_out_channels[0] // 2
71
        self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

        self.time_embedding = TimestepEmbedding(
            init_channels,
            time_embedding_dim,
        )

        self.add_time_condition = Kandinsky3AttentionPooling(
            time_embedding_dim, cross_attention_dim, attention_head_dim
        )

        self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)

        self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)

        hidden_dims = [init_channels] + list(block_out_channels)
        in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
88
        text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
89
90
91
92
93
94
95
96
97
98
99
        num_blocks = len(block_out_channels) * [layers_per_block]
        layer_params = [num_blocks, text_dims, add_self_attention]
        rev_layer_params = map(reversed, layer_params)

        cat_dims = []
        self.num_levels = len(in_out_dims)
        self.down_blocks = nn.ModuleList([])
        for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(in_out_dims, *layer_params)
        ):
            down_sample = level != (self.num_levels - 1)
100
            cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            self.down_blocks.append(
                Kandinsky3DownSampleBlock(
                    in_dim,
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    down_sample,
                    self_attention,
                )
            )

        self.up_blocks = nn.ModuleList([])
        for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(reversed(in_out_dims), *rev_layer_params)
        ):
            up_sample = level != 0
            self.up_blocks.append(
                Kandinsky3UpSampleBlock(
                    in_dim,
                    cat_dims.pop(),
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    up_sample,
                    self_attention,
                )
            )

        self.conv_norm_out = nn.GroupNorm(groups, init_channels)
        self.conv_act_out = nn.SiLU()
        self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
205
        self.set_attn_processor(AttnProcessor())
206
207

    def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
208
209
210
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
211
212
213
214
215
216
217
218
219

        if not torch.is_tensor(timestep):
            dtype = torch.float32 if isinstance(timestep, float) else torch.int32
            timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
        elif len(timestep.shape) == 0:
            timestep = timestep[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timestep = timestep.expand(sample.shape[0])
220
        time_embed_input = self.time_proj(timestep).to(sample.dtype)
221
222
        time_embed = self.time_embedding(time_embed_input)

223
        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
224

225
226
        if encoder_hidden_states is not None:
            time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
227
228

        hidden_states = []
229
        sample = self.conv_in(sample)
230
        for level, down_sample in enumerate(self.down_blocks):
231
            sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
232
            if level != self.num_levels - 1:
233
                hidden_states.append(sample)
234
235
236

        for level, up_sample in enumerate(self.up_blocks):
            if level != 0:
237
238
                sample = torch.cat([sample, hidden_states.pop()], dim=1)
            sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
239

240
241
242
        sample = self.conv_norm_out(sample)
        sample = self.conv_act_out(sample)
        sample = self.conv_out(sample)
243
244

        if not return_dict:
245
246
            return (sample,)
        return Kandinsky3UNetOutput(sample=sample)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265


class Kandinsky3UpSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        cat_dim,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        up_sample=True,
        self_attention=True,
    ):
        super().__init__()
266
        up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
267
268
269
270
271
272
273
274
275
276
277
278
        hidden_channels = (
            [(in_channels + cat_dim, in_channels)]
            + [(in_channels, in_channels)] * (num_blocks - 2)
            + [(in_channels, out_channels)]
        )
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

279
280
281
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
282
            )
283
284
        else:
            attentions.append(nn.Identity())
285
286
287
288
289

        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
            )
290
291
292
293
294
295

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
296
                )
297
298
299
            else:
                attentions.append(nn.Identity())

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
            resnets_out.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)

        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)
        return x


class Kandinsky3DownSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        down_sample=True,
        self_attention=True,
    ):
        super().__init__()
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

343
344
345
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
346
            )
347
348
        else:
            attentions.append(nn.Identity())
349

350
        up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
351
352
353
354
355
        hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )
356
357
358
359
360
361

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
362
                )
363
364
365
            else:
                attentions.append(nn.Identity())

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            resnets_out.append(
                Kandinsky3ResNetBlock(
                    out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)

        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)
        return x


class Kandinsky3ConditionalGroupNorm(nn.Module):
    def __init__(self, groups, normalized_shape, context_dim):
        super().__init__()
        self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
        self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
        self.context_mlp[1].weight.data.zero_()
        self.context_mlp[1].bias.data.zero_()

    def forward(self, x, context):
        context = self.context_mlp(context)

        for _ in range(len(x.shape[2:])):
            context = context.unsqueeze(-1)

        scale, shift = context.chunk(2, dim=1)
        x = self.norm(x) * (scale + 1.0) + shift
        return x


class Kandinsky3Block(nn.Module):
    def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
        super().__init__()
        self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
        self.activation = nn.SiLU()
412
413
414
415
416
        if up_resolution is not None and up_resolution:
            self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
        else:
            self.up_sample = nn.Identity()

417
418
        padding = int(kernel_size > 1)
        self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
419
420
421
422
423

        if up_resolution is not None and not up_resolution:
            self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
        else:
            self.down_sample = nn.Identity()
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

    def forward(self, x, time_embed):
        x = self.group_norm(x, time_embed)
        x = self.activation(x)
        x = self.up_sample(x)
        x = self.projection(x)
        x = self.down_sample(x)
        return x


class Kandinsky3ResNetBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
    ):
        super().__init__()
        kernel_sizes = [1, 3, 3, 1]
        hidden_channel = max(in_channels, out_channels) // compression_ratio
        hidden_channels = (
            [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
        )
        self.resnet_blocks = nn.ModuleList(
            [
                Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
                for (in_channel, out_channel), kernel_size, up_resolution in zip(
                    hidden_channels, kernel_sizes, up_resolutions
                )
            ]
        )
452
453
454
455
        self.shortcut_up_sample = (
            nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
            if True in up_resolutions
            else nn.Identity()
456
        )
457
458
        self.shortcut_projection = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
459
        )
460
461
462
463
        self.shortcut_down_sample = (
            nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
            if False in up_resolutions
            else nn.Identity()
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        )

    def forward(self, x, time_embed):
        out = x
        for resnet_block in self.resnet_blocks:
            out = resnet_block(out, time_embed)

        x = self.shortcut_up_sample(x)
        x = self.shortcut_projection(x)
        x = self.shortcut_down_sample(x)
        x = x + out
        return x


class Kandinsky3AttentionPooling(nn.Module):
    def __init__(self, num_channels, context_dim, head_dim=64):
        super().__init__()
481
482
483
484
485
486
487
        self.attention = Attention(
            context_dim,
            context_dim,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
488
489

    def forward(self, x, context, context_mask=None):
490
        context_mask = context_mask.to(dtype=context.dtype)
491
492
493
494
495
496
497
498
        context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
        return x + context.squeeze(1)


class Kandinsky3AttentionBlock(nn.Module):
    def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
        super().__init__()
        self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
499
500
501
502
503
504
505
        self.attention = Attention(
            num_channels,
            context_dim or num_channels,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
506
507
508
509
510
511
512
513
514
515
516
517
518
519

        hidden_channels = expansion_ratio * num_channels
        self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
        self.feed_forward = nn.Sequential(
            nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
            nn.SiLU(),
            nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
        )

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        height, width = x.shape[-2:]
        out = self.in_norm(x, time_embed)
        out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
        context = context if context is not None else out
520
521
        if context_mask is not None:
            context_mask = context_mask.to(dtype=context.dtype)
522

523
        out = self.attention(out, context, context_mask)
524
525
526
527
528
529
530
        out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
        x = x + out

        out = self.out_norm(x, time_embed)
        out = self.feed_forward(out)
        x = x + out
        return x