single_file_model.py 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import importlib
15
16
17
18
19
import inspect
import re
from contextlib import nullcontext
from typing import Optional

20
import torch
21
from huggingface_hub.utils import validate_hf_hub_args
22
from typing_extensions import Self
23

24
from .. import __version__
25
from ..quantizers import DiffusersAutoQuantizer
26
27
28
from ..utils import deprecate, is_accelerate_available, logging
from .single_file_utils import (
    SingleFileComponentError,
29
    convert_animatediff_checkpoint_to_diffusers,
30
    convert_auraflow_transformer_checkpoint_to_diffusers,
31
    convert_autoencoder_dc_checkpoint_to_diffusers,
32
    convert_controlnet_checkpoint,
33
    convert_flux_transformer_checkpoint_to_diffusers,
34
    convert_hunyuan_video_transformer_to_diffusers,
35
36
    convert_ldm_unet_checkpoint,
    convert_ldm_vae_checkpoint,
Aryan's avatar
Aryan committed
37
38
    convert_ltx_transformer_checkpoint_to_diffusers,
    convert_ltx_vae_checkpoint_to_diffusers,
39
    convert_lumina2_to_diffusers,
40
    convert_mochi_transformer_checkpoint_to_diffusers,
41
    convert_sana_transformer_to_diffusers,
Dhruv Nair's avatar
Dhruv Nair committed
42
    convert_sd3_transformer_checkpoint_to_diffusers,
43
    convert_stable_cascade_unet_single_file_to_diffusers,
44
45
    convert_wan_transformer_to_diffusers,
    convert_wan_vae_to_diffusers,
46
47
48
49
50
51
52
53
54
55
56
57
58
    create_controlnet_diffusers_config_from_ldm,
    create_unet_diffusers_config_from_ldm,
    create_vae_diffusers_config_from_ldm,
    fetch_diffusers_config,
    fetch_original_config,
    load_single_file_checkpoint,
)


logger = logging.get_logger(__name__)


if is_accelerate_available():
59
    from accelerate import dispatch_model, init_empty_weights
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    from ..models.modeling_utils import load_model_dict_into_meta


SINGLE_FILE_LOADABLE_CLASSES = {
    "StableCascadeUNet": {
        "checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers,
    },
    "UNet2DConditionModel": {
        "checkpoint_mapping_fn": convert_ldm_unet_checkpoint,
        "config_mapping_fn": create_unet_diffusers_config_from_ldm,
        "default_subfolder": "unet",
        "legacy_kwargs": {
            "num_in_channels": "in_channels",  # Legacy kwargs supported by `from_single_file` mapped to new args
        },
    },
    "AutoencoderKL": {
        "checkpoint_mapping_fn": convert_ldm_vae_checkpoint,
        "config_mapping_fn": create_vae_diffusers_config_from_ldm,
        "default_subfolder": "vae",
    },
    "ControlNetModel": {
        "checkpoint_mapping_fn": convert_controlnet_checkpoint,
        "config_mapping_fn": create_controlnet_diffusers_config_from_ldm,
    },
Dhruv Nair's avatar
Dhruv Nair committed
85
86
87
88
    "SD3Transformer2DModel": {
        "checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
89
90
91
    "MotionAdapter": {
        "checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers,
    },
92
93
94
    "SparseControlNetModel": {
        "checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers,
    },
95
96
97
98
    "FluxTransformer2DModel": {
        "checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
Aryan's avatar
Aryan committed
99
100
101
102
103
104
105
106
    "LTXVideoTransformer3DModel": {
        "checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
    "AutoencoderKLLTXVideo": {
        "checkpoint_mapping_fn": convert_ltx_vae_checkpoint_to_diffusers,
        "default_subfolder": "vae",
    },
107
    "AutoencoderDC": {"checkpoint_mapping_fn": convert_autoencoder_dc_checkpoint_to_diffusers},
108
109
110
111
    "MochiTransformer3DModel": {
        "checkpoint_mapping_fn": convert_mochi_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
112
113
114
115
    "HunyuanVideoTransformer3DModel": {
        "checkpoint_mapping_fn": convert_hunyuan_video_transformer_to_diffusers,
        "default_subfolder": "transformer",
    },
116
117
118
119
    "AuraFlowTransformer2DModel": {
        "checkpoint_mapping_fn": convert_auraflow_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
120
121
122
123
    "Lumina2Transformer2DModel": {
        "checkpoint_mapping_fn": convert_lumina2_to_diffusers,
        "default_subfolder": "transformer",
    },
124
125
126
127
    "SanaTransformer2DModel": {
        "checkpoint_mapping_fn": convert_sana_transformer_to_diffusers,
        "default_subfolder": "transformer",
    },
128
129
130
131
132
133
134
135
    "WanTransformer3DModel": {
        "checkpoint_mapping_fn": convert_wan_transformer_to_diffusers,
        "default_subfolder": "transformer",
    },
    "AutoencoderKLWan": {
        "checkpoint_mapping_fn": convert_wan_vae_to_diffusers,
        "default_subfolder": "vae",
    },
136
137
138
}


139
140
141
142
143
144
145
146
147
148
149
def _get_single_file_loadable_mapping_class(cls):
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    for loadable_class_str in SINGLE_FILE_LOADABLE_CLASSES:
        loadable_class = getattr(diffusers_module, loadable_class_str)

        if issubclass(cls, loadable_class):
            return loadable_class_str

    return None


150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def _get_mapping_function_kwargs(mapping_fn, **kwargs):
    parameters = inspect.signature(mapping_fn).parameters

    mapping_kwargs = {}
    for parameter in parameters:
        if parameter in kwargs:
            mapping_kwargs[parameter] = kwargs[parameter]

    return mapping_kwargs


class FromOriginalModelMixin:
    """
    Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model.
    """

    @classmethod
    @validate_hf_hub_args
168
    def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs) -> Self:
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        r"""
        Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model
        is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path_or_dict (`str`, *optional*):
                Can be either:
                    - A link to the `.safetensors` or `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub.
                    - A path to a local *file* containing the weights of the component model.
                    - A state dict containing the component model weights.
            config (`str`, *optional*):
                - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted
                  on the Hub.
                - A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component
                  configs in Diffusers format.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            original_config (`str`, *optional*):
                Dict or path to a yaml file containing the configuration for the model in its original format.
                    If a dict is provided, it will be used to initialize the model configuration.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
199

200
201
202
203
204
205
206
207
208
209
210
211
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
212
213
214
            disable_mmap ('bool', *optional*, defaults to 'False'):
                Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
                is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
215
216
217
218
219
220
221
222
223
224
225
226
227
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        ```py
        >>> from diffusers import StableCascadeUNet

        >>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
        >>> model = StableCascadeUNet.from_single_file(ckpt_path)
        ```
        """

228
229
230
        mapping_class_name = _get_single_file_loadable_mapping_class(cls)
        # if class_name not in SINGLE_FILE_LOADABLE_CLASSES:
        if mapping_class_name is None:
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            raise ValueError(
                f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}"
            )

        pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None)
        if pretrained_model_link_or_path is not None:
            deprecation_message = (
                "Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes"
            )
            deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message)
            pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path

        config = kwargs.pop("config", None)
        original_config = kwargs.pop("original_config", None)

        if config is not None and original_config is not None:
            raise ValueError(
                "`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments"
            )

        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", None)
        subfolder = kwargs.pop("subfolder", None)
        revision = kwargs.pop("revision", None)
258
        config_revision = kwargs.pop("config_revision", None)
259
        torch_dtype = kwargs.pop("torch_dtype", None)
260
261
        quantization_config = kwargs.pop("quantization_config", None)
        device = kwargs.pop("device", None)
262
        disable_mmap = kwargs.pop("disable_mmap", False)
263

264
265
266
267
268
        user_agent = {"diffusers": __version__, "file_type": "single_file", "framework": "pytorch"}
        # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
        if quantization_config is not None:
            user_agent["quant"] = quantization_config.quant_method.value

269
        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
270
271
272
273
274
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

275
276
277
278
279
280
281
282
283
284
285
        if isinstance(pretrained_model_link_or_path_or_dict, dict):
            checkpoint = pretrained_model_link_or_path_or_dict
        else:
            checkpoint = load_single_file_checkpoint(
                pretrained_model_link_or_path_or_dict,
                force_download=force_download,
                proxies=proxies,
                token=token,
                cache_dir=cache_dir,
                local_files_only=local_files_only,
                revision=revision,
286
                disable_mmap=disable_mmap,
287
                user_agent=user_agent,
288
            )
289
290
291
        if quantization_config is not None:
            hf_quantizer = DiffusersAutoQuantizer.from_config(quantization_config)
            hf_quantizer.validate_environment()
292
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
293
294
295

        else:
            hf_quantizer = None
296

297
        mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name]
298
299

        checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"]
300
        if original_config is not None:
301
302
303
304
305
306
307
308
            if "config_mapping_fn" in mapping_functions:
                config_mapping_fn = mapping_functions["config_mapping_fn"]
            else:
                config_mapping_fn = None

            if config_mapping_fn is None:
                raise ValueError(
                    (
309
                        f"`original_config` has been provided for {mapping_class_name} but no mapping function"
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                        "was found to convert the original config to a Diffusers config in"
                        "`diffusers.loaders.single_file_utils`"
                    )
                )

            if isinstance(original_config, str):
                # If original_config is a URL or filepath fetch the original_config dict
                original_config = fetch_original_config(original_config, local_files_only=local_files_only)

            config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs)
            diffusers_model_config = config_mapping_fn(
                original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs
            )
        else:
324
            if config is not None:
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
                if isinstance(config, str):
                    default_pretrained_model_config_name = config
                else:
                    raise ValueError(
                        (
                            "Invalid `config` argument. Please provide a string representing a repo id"
                            "or path to a local Diffusers model repo."
                        )
                    )

            else:
                config = fetch_diffusers_config(checkpoint)
                default_pretrained_model_config_name = config["pretrained_model_name_or_path"]

                if "default_subfolder" in mapping_functions:
                    subfolder = mapping_functions["default_subfolder"]

                subfolder = subfolder or config.pop(
                    "subfolder", None
                )  # some configs contain a subfolder key, e.g. StableCascadeUNet

            diffusers_model_config = cls.load_config(
                pretrained_model_name_or_path=default_pretrained_model_config_name,
                subfolder=subfolder,
                local_files_only=local_files_only,
350
                token=token,
351
                revision=config_revision,
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
            )
            expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)

            # Map legacy kwargs to new kwargs
            if "legacy_kwargs" in mapping_functions:
                legacy_kwargs = mapping_functions["legacy_kwargs"]
                for legacy_key, new_key in legacy_kwargs.items():
                    if legacy_key in kwargs:
                        kwargs[new_key] = kwargs.pop(legacy_key)

            model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs}
            diffusers_model_config.update(model_kwargs)

        checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs)
        diffusers_format_checkpoint = checkpoint_mapping_fn(
            config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs
        )
        if not diffusers_format_checkpoint:
            raise SingleFileComponentError(
371
                f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint."
372
373
374
375
376
377
            )

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            model = cls.from_config(diffusers_model_config)

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        # Check if `_keep_in_fp32_modules` is not None
        use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
            (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
        )
        if use_keep_in_fp32_modules:
            keep_in_fp32_modules = cls._keep_in_fp32_modules
            if not isinstance(keep_in_fp32_modules, list):
                keep_in_fp32_modules = [keep_in_fp32_modules]

        else:
            keep_in_fp32_modules = []

        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model,
                device_map=None,
                state_dict=diffusers_format_checkpoint,
                keep_in_fp32_modules=keep_in_fp32_modules,
            )

398
        device_map = None
399
        if is_accelerate_available():
400
            param_device = torch.device(device) if device else torch.device("cpu")
401
402
403
404
405
406
            empty_state_dict = model.state_dict()
            unexpected_keys = [
                param_name for param_name in diffusers_format_checkpoint if param_name not in empty_state_dict
            ]
            device_map = {"": param_device}
            load_model_dict_into_meta(
407
408
409
                model,
                diffusers_format_checkpoint,
                dtype=torch_dtype,
410
                device_map=device_map,
411
412
                hf_quantizer=hf_quantizer,
                keep_in_fp32_modules=keep_in_fp32_modules,
413
                unexpected_keys=unexpected_keys,
414
            )
415
        else:
416
417
418
419
420
421
422
423
424
425
            _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)

        if model._keys_to_ignore_on_load_unexpected is not None:
            for pat in model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
            )
426

427
428
429
430
431
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer

        if torch_dtype is not None and hf_quantizer is None:
432
433
434
435
            model.to(torch_dtype)

        model.eval()

436
437
438
439
        if device_map is not None:
            device_map_kwargs = {"device_map": device_map}
            dispatch_model(model, **device_map_kwargs)

440
        return model