single_file_model.py 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import importlib
15
16
17
18
19
import inspect
import re
from contextlib import nullcontext
from typing import Optional

20
import torch
21
from huggingface_hub.utils import validate_hf_hub_args
22
from typing_extensions import Self
23

24
from ..quantizers import DiffusersAutoQuantizer
25
26
27
from ..utils import deprecate, is_accelerate_available, logging
from .single_file_utils import (
    SingleFileComponentError,
28
    convert_animatediff_checkpoint_to_diffusers,
29
    convert_auraflow_transformer_checkpoint_to_diffusers,
30
    convert_autoencoder_dc_checkpoint_to_diffusers,
31
    convert_controlnet_checkpoint,
32
    convert_flux_transformer_checkpoint_to_diffusers,
33
    convert_hunyuan_video_transformer_to_diffusers,
34
35
    convert_ldm_unet_checkpoint,
    convert_ldm_vae_checkpoint,
Aryan's avatar
Aryan committed
36
37
    convert_ltx_transformer_checkpoint_to_diffusers,
    convert_ltx_vae_checkpoint_to_diffusers,
38
    convert_lumina2_to_diffusers,
39
    convert_mochi_transformer_checkpoint_to_diffusers,
Dhruv Nair's avatar
Dhruv Nair committed
40
    convert_sd3_transformer_checkpoint_to_diffusers,
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    convert_stable_cascade_unet_single_file_to_diffusers,
    create_controlnet_diffusers_config_from_ldm,
    create_unet_diffusers_config_from_ldm,
    create_vae_diffusers_config_from_ldm,
    fetch_diffusers_config,
    fetch_original_config,
    load_single_file_checkpoint,
)


logger = logging.get_logger(__name__)


if is_accelerate_available():
    from accelerate import init_empty_weights

    from ..models.modeling_utils import load_model_dict_into_meta


SINGLE_FILE_LOADABLE_CLASSES = {
    "StableCascadeUNet": {
        "checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers,
    },
    "UNet2DConditionModel": {
        "checkpoint_mapping_fn": convert_ldm_unet_checkpoint,
        "config_mapping_fn": create_unet_diffusers_config_from_ldm,
        "default_subfolder": "unet",
        "legacy_kwargs": {
            "num_in_channels": "in_channels",  # Legacy kwargs supported by `from_single_file` mapped to new args
        },
    },
    "AutoencoderKL": {
        "checkpoint_mapping_fn": convert_ldm_vae_checkpoint,
        "config_mapping_fn": create_vae_diffusers_config_from_ldm,
        "default_subfolder": "vae",
    },
    "ControlNetModel": {
        "checkpoint_mapping_fn": convert_controlnet_checkpoint,
        "config_mapping_fn": create_controlnet_diffusers_config_from_ldm,
    },
Dhruv Nair's avatar
Dhruv Nair committed
81
82
83
84
    "SD3Transformer2DModel": {
        "checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
85
86
87
    "MotionAdapter": {
        "checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers,
    },
88
89
90
    "SparseControlNetModel": {
        "checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers,
    },
91
92
93
94
    "FluxTransformer2DModel": {
        "checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
Aryan's avatar
Aryan committed
95
96
97
98
99
100
101
102
    "LTXVideoTransformer3DModel": {
        "checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
    "AutoencoderKLLTXVideo": {
        "checkpoint_mapping_fn": convert_ltx_vae_checkpoint_to_diffusers,
        "default_subfolder": "vae",
    },
103
    "AutoencoderDC": {"checkpoint_mapping_fn": convert_autoencoder_dc_checkpoint_to_diffusers},
104
105
106
107
    "MochiTransformer3DModel": {
        "checkpoint_mapping_fn": convert_mochi_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
108
109
110
111
    "HunyuanVideoTransformer3DModel": {
        "checkpoint_mapping_fn": convert_hunyuan_video_transformer_to_diffusers,
        "default_subfolder": "transformer",
    },
112
113
114
115
    "AuraFlowTransformer2DModel": {
        "checkpoint_mapping_fn": convert_auraflow_transformer_checkpoint_to_diffusers,
        "default_subfolder": "transformer",
    },
116
117
118
119
    "Lumina2Transformer2DModel": {
        "checkpoint_mapping_fn": convert_lumina2_to_diffusers,
        "default_subfolder": "transformer",
    },
120
121
122
}


123
124
125
126
127
128
129
130
131
132
133
def _get_single_file_loadable_mapping_class(cls):
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    for loadable_class_str in SINGLE_FILE_LOADABLE_CLASSES:
        loadable_class = getattr(diffusers_module, loadable_class_str)

        if issubclass(cls, loadable_class):
            return loadable_class_str

    return None


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def _get_mapping_function_kwargs(mapping_fn, **kwargs):
    parameters = inspect.signature(mapping_fn).parameters

    mapping_kwargs = {}
    for parameter in parameters:
        if parameter in kwargs:
            mapping_kwargs[parameter] = kwargs[parameter]

    return mapping_kwargs


class FromOriginalModelMixin:
    """
    Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model.
    """

    @classmethod
    @validate_hf_hub_args
152
    def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs) -> Self:
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        r"""
        Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model
        is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path_or_dict (`str`, *optional*):
                Can be either:
                    - A link to the `.safetensors` or `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub.
                    - A path to a local *file* containing the weights of the component model.
                    - A state dict containing the component model weights.
            config (`str`, *optional*):
                - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted
                  on the Hub.
                - A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component
                  configs in Diffusers format.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            original_config (`str`, *optional*):
                Dict or path to a yaml file containing the configuration for the model in its original format.
                    If a dict is provided, it will be used to initialize the model configuration.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
183

184
185
186
187
188
189
190
191
192
193
194
195
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
196
197
198
            disable_mmap ('bool', *optional*, defaults to 'False'):
                Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
                is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
199
200
201
202
203
204
205
206
207
208
209
210
211
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (for example the pipeline components of the
                specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
                method. See example below for more information.

        ```py
        >>> from diffusers import StableCascadeUNet

        >>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
        >>> model = StableCascadeUNet.from_single_file(ckpt_path)
        ```
        """

212
213
214
        mapping_class_name = _get_single_file_loadable_mapping_class(cls)
        # if class_name not in SINGLE_FILE_LOADABLE_CLASSES:
        if mapping_class_name is None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
            raise ValueError(
                f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}"
            )

        pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None)
        if pretrained_model_link_or_path is not None:
            deprecation_message = (
                "Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes"
            )
            deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message)
            pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path

        config = kwargs.pop("config", None)
        original_config = kwargs.pop("original_config", None)

        if config is not None and original_config is not None:
            raise ValueError(
                "`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments"
            )

        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", None)
        subfolder = kwargs.pop("subfolder", None)
        revision = kwargs.pop("revision", None)
242
        config_revision = kwargs.pop("config_revision", None)
243
        torch_dtype = kwargs.pop("torch_dtype", None)
244
245
        quantization_config = kwargs.pop("quantization_config", None)
        device = kwargs.pop("device", None)
246
        disable_mmap = kwargs.pop("disable_mmap", False)
247
248
249
250
251
252
253
254
255
256
257
258

        if isinstance(pretrained_model_link_or_path_or_dict, dict):
            checkpoint = pretrained_model_link_or_path_or_dict
        else:
            checkpoint = load_single_file_checkpoint(
                pretrained_model_link_or_path_or_dict,
                force_download=force_download,
                proxies=proxies,
                token=token,
                cache_dir=cache_dir,
                local_files_only=local_files_only,
                revision=revision,
259
                disable_mmap=disable_mmap,
260
            )
261
262
263
264
265
266
        if quantization_config is not None:
            hf_quantizer = DiffusersAutoQuantizer.from_config(quantization_config)
            hf_quantizer.validate_environment()

        else:
            hf_quantizer = None
267

268
        mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name]
269
270

        checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"]
271
        if original_config is not None:
272
273
274
275
276
277
278
279
            if "config_mapping_fn" in mapping_functions:
                config_mapping_fn = mapping_functions["config_mapping_fn"]
            else:
                config_mapping_fn = None

            if config_mapping_fn is None:
                raise ValueError(
                    (
280
                        f"`original_config` has been provided for {mapping_class_name} but no mapping function"
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                        "was found to convert the original config to a Diffusers config in"
                        "`diffusers.loaders.single_file_utils`"
                    )
                )

            if isinstance(original_config, str):
                # If original_config is a URL or filepath fetch the original_config dict
                original_config = fetch_original_config(original_config, local_files_only=local_files_only)

            config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs)
            diffusers_model_config = config_mapping_fn(
                original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs
            )
        else:
295
            if config is not None:
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
                if isinstance(config, str):
                    default_pretrained_model_config_name = config
                else:
                    raise ValueError(
                        (
                            "Invalid `config` argument. Please provide a string representing a repo id"
                            "or path to a local Diffusers model repo."
                        )
                    )

            else:
                config = fetch_diffusers_config(checkpoint)
                default_pretrained_model_config_name = config["pretrained_model_name_or_path"]

                if "default_subfolder" in mapping_functions:
                    subfolder = mapping_functions["default_subfolder"]

                subfolder = subfolder or config.pop(
                    "subfolder", None
                )  # some configs contain a subfolder key, e.g. StableCascadeUNet

            diffusers_model_config = cls.load_config(
                pretrained_model_name_or_path=default_pretrained_model_config_name,
                subfolder=subfolder,
                local_files_only=local_files_only,
321
                token=token,
322
                revision=config_revision,
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            )
            expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)

            # Map legacy kwargs to new kwargs
            if "legacy_kwargs" in mapping_functions:
                legacy_kwargs = mapping_functions["legacy_kwargs"]
                for legacy_key, new_key in legacy_kwargs.items():
                    if legacy_key in kwargs:
                        kwargs[new_key] = kwargs.pop(legacy_key)

            model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs}
            diffusers_model_config.update(model_kwargs)

        checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs)
        diffusers_format_checkpoint = checkpoint_mapping_fn(
            config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs
        )
        if not diffusers_format_checkpoint:
            raise SingleFileComponentError(
342
                f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint."
343
344
345
346
347
348
            )

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            model = cls.from_config(diffusers_model_config)

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        # Check if `_keep_in_fp32_modules` is not None
        use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
            (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
        )
        if use_keep_in_fp32_modules:
            keep_in_fp32_modules = cls._keep_in_fp32_modules
            if not isinstance(keep_in_fp32_modules, list):
                keep_in_fp32_modules = [keep_in_fp32_modules]

        else:
            keep_in_fp32_modules = []

        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model,
                device_map=None,
                state_dict=diffusers_format_checkpoint,
                keep_in_fp32_modules=keep_in_fp32_modules,
            )

369
        if is_accelerate_available():
370
            param_device = torch.device(device) if device else torch.device("cpu")
hlky's avatar
hlky committed
371
            named_buffers = model.named_buffers()
372
373
374
375
376
377
378
            unexpected_keys = load_model_dict_into_meta(
                model,
                diffusers_format_checkpoint,
                dtype=torch_dtype,
                device=param_device,
                hf_quantizer=hf_quantizer,
                keep_in_fp32_modules=keep_in_fp32_modules,
hlky's avatar
hlky committed
379
                named_buffers=named_buffers,
380
            )
381
382

        else:
383
384
385
386
387
388
389
390
391
392
            _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)

        if model._keys_to_ignore_on_load_unexpected is not None:
            for pat in model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
            )
393

394
395
396
397
398
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer

        if torch_dtype is not None and hf_quantizer is None:
399
400
401
402
403
            model.to(torch_dtype)

        model.eval()

        return model