scheduling_euler_discrete.py 19.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27
28
29
30
31
32
33
34


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EulerDiscreteSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
36
37
38

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
40
41
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
43
44
45
46
47
48
49
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
57
58
59
60
61
62
63
64
65
66
67
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72
73

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
85
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
86
87
88
89
90

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
93
94
    return torch.tensor(betas, dtype=torch.float32)


hlky's avatar
hlky committed
95
96
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
97
    Euler scheduler.
hlky's avatar
hlky committed
98

99
100
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
101
102

    Args:
103
104
105
106
107
108
109
110
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
111
            `linear` or `scaled_linear`.
112
113
114
115
116
117
118
119
120
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        interpolation_type(`str`, defaults to `"linear"`, *optional*):
            The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of
            `"linear"` or `"log_linear"`.
121
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
122
123
124
125
126
127
128
129
130
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
hlky's avatar
hlky committed
131
132
    """

Kashif Rasul's avatar
Kashif Rasul committed
133
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
134
    order = 1
135

hlky's avatar
hlky committed
136
137
138
139
140
141
142
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
143
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Suraj Patil's avatar
Suraj Patil committed
144
        prediction_type: str = "epsilon",
145
        interpolation_type: str = "linear",
146
        use_karras_sigmas: Optional[bool] = False,
147
148
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
hlky's avatar
hlky committed
149
150
    ):
        if trained_betas is not None:
151
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
152
153
154
155
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
156
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
157
158
159
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.is_scale_input_called = False
175
        self.use_karras_sigmas = use_karras_sigmas
hlky's avatar
hlky committed
176

YiYi Xu's avatar
YiYi Xu committed
177
178
        self._step_index = None

179
180
181
182
183
184
185
186
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
187
188
189
190
191
192
193
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

hlky's avatar
hlky committed
194
195
196
197
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
198
199
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
200
201

        Args:
202
203
204
205
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
206
207

        Returns:
208
209
            `torch.FloatTensor`:
                A scaled input sample.
hlky's avatar
hlky committed
210
        """
YiYi Xu's avatar
YiYi Xu committed
211
212
        if self.step_index is None:
            self._init_step_index(timestep)
213

YiYi Xu's avatar
YiYi Xu committed
214
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
215
        sample = sample / ((sigma**2 + 1) ** 0.5)
216

hlky's avatar
hlky committed
217
218
219
220
221
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
222
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
223
224
225

        Args:
            num_inference_steps (`int`):
226
227
228
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
hlky's avatar
hlky committed
229
230
231
        """
        self.num_inference_steps = num_inference_steps

232
233
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
234
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
235
236
237
238
239
240
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
241
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
242
243
244
245
246
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
247
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
248
249
250
251
252
253
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

hlky's avatar
hlky committed
254
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
255
        log_sigmas = np.log(sigmas)
256
257
258
259
260
261
262
263
264
265
266

        if self.config.interpolation_type == "linear":
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        elif self.config.interpolation_type == "log_linear":
            sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp()
        else:
            raise ValueError(
                f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
                " 'linear' or 'log_linear'"
            )

267
        if self.use_karras_sigmas:
268
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
269
270
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

hlky's avatar
hlky committed
271
272
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
273
274
275

        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None
hlky's avatar
hlky committed
276

277
278
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
279
        log_sigma = np.log(np.maximum(sigma, 1e-10))
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
301
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
302
303
304
305
306
307
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
308
        ramp = np.linspace(0, 1, num_inference_steps)
309
310
311
312
313
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

YiYi Xu's avatar
YiYi Xu committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
        else:
            step_index = index_candidates[0]

        self._step_index = step_index.item()

hlky's avatar
hlky committed
331
332
333
334
335
336
337
338
339
340
341
342
343
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
        """
344
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
345
346
347
        process from the learned model outputs (most often the predicted noise).

        Args:
348
349
350
351
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
hlky's avatar
hlky committed
352
            sample (`torch.FloatTensor`):
353
354
355
356
357
358
359
360
361
362
363
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.
hlky's avatar
hlky committed
364
365

        Returns:
366
367
368
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
369
370
371
372
373
374
375
376
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
377
378
379
380
381
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
382
383
384
            )

        if not self.is_scale_input_called:
385
            logger.warning(
hlky's avatar
hlky committed
386
387
388
389
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
390
391
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
392

YiYi Xu's avatar
YiYi Xu committed
393
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
394
395
396

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

397
398
399
        noise = randn_tensor(
            model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
        )
400

hlky's avatar
hlky committed
401
402
403
404
405
406
407
        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
408
409
410
        # NOTE: "original_sample" should not be an expected prediction_type but is left in for
        # backwards compatibility
        if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample":
411
412
            pred_original_sample = model_output
        elif self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
413
            pred_original_sample = sample - sigma_hat * model_output
414
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
415
416
417
418
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
419
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
Suraj Patil's avatar
Suraj Patil committed
420
            )
hlky's avatar
hlky committed
421
422
423
424

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

YiYi Xu's avatar
YiYi Xu committed
425
        dt = self.sigmas[self.step_index + 1] - sigma_hat
hlky's avatar
hlky committed
426
427
428

        prev_sample = sample + derivative * dt

YiYi Xu's avatar
YiYi Xu committed
429
430
431
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
432
433
434
435
436
437
438
439
440
441
442
443
        if not return_dict:
            return (prev_sample,)

        return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
444
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
445
446
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
447
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
448
449
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
450
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
451
452
            timesteps = timesteps.to(original_samples.device)

Anton Lozhkov's avatar
Anton Lozhkov committed
453
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
hlky's avatar
hlky committed
454

455
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
456
457
458
459
460
461
462
463
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps