scheduling_utils.py 4.3 KB
Newer Older
Patrick von Platen's avatar
up  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
14
15
from typing import Union

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
up  
Patrick von Platen committed
17
18
19
import torch


Patrick von Platen's avatar
Patrick von Platen committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
SCHEDULER_CONFIG_NAME = "scheduler_config.json"


class SchedulerMixin:

    config_name = SCHEDULER_CONFIG_NAME

    def set_format(self, tensor_format="pt"):
        self.tensor_format = tensor_format
        if tensor_format == "pt":
            for key, value in vars(self).items():
                if isinstance(value, np.ndarray):
                    setattr(self, key, torch.from_numpy(value))

        return self

    def clip(self, tensor, min_value=None, max_value=None):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.clip(tensor, min_value, max_value)
        elif tensor_format == "pt":
            return torch.clamp(tensor, min_value, max_value)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
45
46
47
48
49
50
51
52
53
54

    def log(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.log(tensor)
        elif tensor_format == "pt":
            return torch.log(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
55

Nathan Lambert's avatar
Nathan Lambert committed
56
57
58
59
60
61
62
63
64
65
    def long(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.int64(tensor)
        elif tensor_format == "pt":
            return tensor.long()

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

Patrick von Platen's avatar
Patrick von Platen committed
66
    def match_shape(self, values: Union[np.ndarray, torch.Tensor], broadcast_array: Union[np.ndarray, torch.Tensor]):
67
        """
Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
        Turns a 1-D array into an array or tensor with len(broadcast_array.shape) dims.

        Args:
Nathan Lambert's avatar
Nathan Lambert committed
71
            values: an array or tensor of values to extract.
Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
75
            broadcast_array: an array with a larger shape of K dimensions with the batch
                dimension equal to the length of timesteps.
        Returns:
            a tensor of shape [batch_size, 1, ...] where the shape has K dims.
76
77
78
79
80
81
82
83
84
85
86
        """

        tensor_format = getattr(self, "tensor_format", "pt")
        values = values.flatten()

        while len(values.shape) < len(broadcast_array.shape):
            values = values[..., None]
        if tensor_format == "pt":
            values = values.to(broadcast_array.device)

        return values
Nathan Lambert's avatar
Nathan Lambert committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    def norm(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.linalg.norm(tensor)
        elif tensor_format == "pt":
            return torch.norm(tensor.reshape(tensor.shape[0], -1), dim=-1).mean()

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def randn_like(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.random.randn(*np.shape(tensor))
        elif tensor_format == "pt":
            return torch.randn_like(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def repeat_scalar(self, tensor, count):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.repeat(tensor, count)
        elif tensor_format == "pt":
            return torch.repeat_interleave(tensor, count)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def zeros_like(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.zeros_like(tensor)
        elif tensor_format == "pt":
            return torch.zeros_like(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")