decoders.py 3.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, List, Tuple, Union

import numpy as np
import PIL
import torch

from ...configuration_utils import FrozenDict
from ...models import AutoencoderKL
from ...utils import logging
from ...video_processor import VaeImageProcessor
25
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def _unpack_latents(latents, height, width, vae_scale_factor):
    batch_size, num_patches, channels = latents.shape

    # VAE applies 8x compression on images but we must also account for packing which requires
    # latent height and width to be divisible by 2.
    height = 2 * (int(height) // (vae_scale_factor * 2))
    width = 2 * (int(width) // (vae_scale_factor * 2))

    latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
    latents = latents.permute(0, 3, 1, 4, 2, 5)

    latents = latents.reshape(batch_size, channels // (2 * 2), height, width)

    return latents


48
class FluxDecodeStep(ModularPipelineBlocks):
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    model_name = "flux"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("vae", AutoencoderKL),
            ComponentSpec(
                "image_processor",
                VaeImageProcessor,
                config=FrozenDict({"vae_scale_factor": 16}),
                default_creation_method="from_config",
            ),
        ]

    @property
    def description(self) -> str:
        return "Step that decodes the denoised latents into images"

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return [
            InputParam("output_type", default="pil"),
            InputParam("height", default=1024),
            InputParam("width", default=1024),
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The denoised latents from the denoising step",
78
            ),
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        ]

    @property
    def intermediate_outputs(self) -> List[str]:
        return [
            OutputParam(
                "images",
                type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
                description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
            )
        ]

    @torch.no_grad()
    def __call__(self, components, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)
        vae = components.vae

        if not block_state.output_type == "latent":
            latents = block_state.latents
            latents = _unpack_latents(latents, block_state.height, block_state.width, components.vae_scale_factor)
            latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
            block_state.images = vae.decode(latents, return_dict=False)[0]
            block_state.images = components.image_processor.postprocess(
                block_state.images, output_type=block_state.output_type
            )
        else:
            block_state.images = block_state.latents

        self.set_block_state(state, block_state)

        return components, state