scheduling_ddpm_flax.py 12.4 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
21
import jax
22
23
import jax.numpy as jnp

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate
26
27
from .scheduling_utils_flax import (
    _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS,
28
    CommonSchedulerState,
29
30
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
31
    add_noise_common,
32
)
33
34
35
36


@flax.struct.dataclass
class DDPMSchedulerState:
37
38
    common: CommonSchedulerState

39
    # setable values
40
    init_noise_sigma: jnp.ndarray
41
42
43
44
    timesteps: jnp.ndarray
    num_inference_steps: Optional[int] = None

    @classmethod
45
46
    def create(cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray):
        return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps)
47
48
49


@dataclass
50
class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput):
51
52
53
    state: DDPMSchedulerState


54
class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin):
55
56
57
58
59
60
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
61
62
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
80
81
82
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`.
            `v-prediction` is not supported for this scheduler.
83
84
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            the `dtype` used for params and computation.
85
86
    """

87
    _compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
88
    _deprecated_kwargs = ["predict_epsilon"]
89

90
91
    dtype: jnp.dtype

92
93
94
95
    @property
    def has_state(self):
        return True

96
97
98
99
100
101
102
103
104
105
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
106
        prediction_type: str = "epsilon",
107
        dtype: jnp.dtype = jnp.float32,
108
        **kwargs,
109
    ):
110
111
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
112
            f" {self.__class__.__name__}.from_pretrained(<model_id>, prediction_type='epsilon')`."
113
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
114
        predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
115
116
117
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        self.dtype = dtype

    def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDPMSchedulerState:
        if common is None:
            common = CommonSchedulerState.create(self)

        # standard deviation of the initial noise distribution
        init_noise_sigma = jnp.array(1.0, dtype=self.dtype)

        timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]

        return DDPMSchedulerState.create(
            common=common,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
134

135
136
137
138
139
140
141
142
    def scale_model_input(
        self, state: DDPMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
    ) -> jnp.ndarray:
        """
        Args:
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
            sample (`jnp.ndarray`): input sample
            timestep (`int`, optional): current timestep
143

144
145
146
147
        Returns:
            `jnp.ndarray`: scaled input sample
        """
        return sample
148

149
150
151
    def set_timesteps(
        self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple = ()
    ) -> DDPMSchedulerState:
152
153
154
155
156
157
158
159
160
161
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DDIMSchedulerState`):
                the `FlaxDDPMScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """

162
163
164
165
166
167
168
169
170
171
172
173
174
        step_ratio = self.config.num_train_timesteps // num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # rounding to avoid issues when num_inference_step is power of 3
        timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1]

        return state.replace(
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
        )

    def _get_variance(self, state: DDPMSchedulerState, t, predicted_variance=None, variance_type=None):
        alpha_prod_t = state.common.alphas_cumprod[t]
        alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype))
175
176
177
178

        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
179
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
180
181
182
183
184
185
186
187
188
189
190

        if variance_type is None:
            variance_type = self.config.variance_type

        # hacks - were probably added for training stability
        if variance_type == "fixed_small":
            variance = jnp.clip(variance, a_min=1e-20)
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif variance_type == "fixed_small_log":
            variance = jnp.log(jnp.clip(variance, a_min=1e-20))
        elif variance_type == "fixed_large":
191
            variance = state.common.betas[t]
192
193
        elif variance_type == "fixed_large_log":
            # Glide max_log
194
            variance = jnp.log(state.common.betas[t])
195
196
197
198
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
199
            max_log = state.common.betas[t]
200
201
202
203
204
205
206
207
208
209
210
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    def step(
        self,
        state: DDPMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
211
        key: jax.random.KeyArray,
212
        return_dict: bool = True,
213
    ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
214
215
216
217
218
219
220
221
222
223
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
224
            key (`jax.random.KeyArray`): a PRNG key.
225
            return_dict (`bool`): option for returning tuple rather than FlaxDDPMSchedulerOutput class
226
227

        Returns:
228
229
            [`FlaxDDPMSchedulerOutput`] or `tuple`: [`FlaxDDPMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
230
231
232
233

        """
        t = timestep

234
        if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
235
236
237
238
239
            model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1)
        else:
            predicted_variance = None

        # 1. compute alphas, betas
240
241
        alpha_prod_t = state.common.alphas_cumprod[t]
        alpha_prod_t_prev = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype))
242
243
244
245
246
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
247
        if self.config.prediction_type == "epsilon":
248
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
249
        elif self.config.prediction_type == "sample":
250
            pred_original_sample = model_output
251
252
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
253
254
255
256
257
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` "
                " for the FlaxDDPMScheduler."
            )
258
259
260
261
262
263
264

        # 3. Clip "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = jnp.clip(pred_original_sample, -1, 1)

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
265
266
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * state.common.betas[t]) / beta_prod_t
        current_sample_coeff = state.common.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
267
268
269
270
271
272

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
273
274
275
276
277
278
        def random_variance():
            split_key = jax.random.split(key, num=1)
            noise = jax.random.normal(split_key, shape=model_output.shape, dtype=self.dtype)
            return (self._get_variance(state, t, predicted_variance=predicted_variance) ** 0.5) * noise

        variance = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype))
279
280
281
282
283
284

        pred_prev_sample = pred_prev_sample + variance

        if not return_dict:
            return (pred_prev_sample, state)

285
        return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state)
286
287
288

    def add_noise(
        self,
289
        state: DDPMSchedulerState,
290
291
292
293
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
294
        return add_noise_common(state.common, original_samples, noise, timesteps)
295
296
297

    def __len__(self):
        return self.config.num_train_timesteps