pipeline_ddpm.py 4.53 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


Sid Sahai's avatar
Sid Sahai committed
16
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

20
from ...configuration_utils import FrozenDict
21
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
22
from ...utils import deprecate
Patrick von Platen's avatar
Patrick von Platen committed
23
24


Patrick von Platen's avatar
Patrick von Platen committed
25
class DDPMPipeline(DiffusionPipeline):
26
27
28
29
30
31
32
33
34
35
36
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

37
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
38
        super().__init__()
39
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
40

Patrick von Platen's avatar
Patrick von Platen committed
41
    @torch.no_grad()
42
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
43
44
45
        self,
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
46
        num_inference_steps: int = 1000,
Sid Sahai's avatar
Sid Sahai committed
47
48
49
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
50
    ) -> Union[ImagePipelineOutput, Tuple]:
51
52
        r"""
        Args:
53
            batch_size (`int`, *optional*, defaults to 1):
54
                The number of images to generate.
55
            generator (`torch.Generator`, *optional*):
56
57
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
58
59
60
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
61
            output_type (`str`, *optional*, defaults to `"pil"`):
62
                The output format of the generate image. Choose between
63
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
64
            return_dict (`bool`, *optional*, defaults to `True`):
65
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
66
67
68
69
70

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
71
        """
72
73
74
75
76
77
78
79
80
81
        message = (
            "Please make sure to instantiate your scheduler with `predict_epsilon` instead. E.g. `scheduler ="
            " DDPMScheduler.from_config(<model_id>, predict_epsilon=True)`."
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)

        if predict_epsilon is not None:
            new_config = dict(self.scheduler.config)
            new_config["predict_epsilon"] = predict_epsilon
            self.scheduler._internal_dict = FrozenDict(new_config)
Patrick von Platen's avatar
Patrick von Platen committed
82
83

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
84
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
85
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
86
87
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
88
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
89

90
        # set step values
91
        self.scheduler.set_timesteps(num_inference_steps)
92

hysts's avatar
hysts committed
93
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
94
            # 1. predict noise model_output
95
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
96

97
            # 2. compute previous image: x_t -> x_t-1
98
99
100
            image = self.scheduler.step(
                model_output, t, image, generator=generator, predict_epsilon=predict_epsilon
            ).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
101

102
103
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
104
105
        if output_type == "pil":
            image = self.numpy_to_pil(image)
106

107
108
109
110
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)